Проведение импульса через антриовентрикулярный узел. Сортировка импульса в АВ-узле

Схема проводящей системы сердца

Проведение импульса через антриовентрикулярный узел. Сортировка импульса в АВ-узле

В ее состав входят: (1) синусный узел (который также называют синоатриальным или С-А узлом), где и происходит ритмическая генерация импульсов; (2) предсердные межузловые пучки, по которым импульсы проводятся от синусного узла к агриовентрикулярному узлу; (3) атриовентрикулярный узел, в котором происходит задержка проведения импульсов от предсердий к желудочкам; (4) атриовентрикулярный пучок, по которому импульсы проводятся к желудочкам; (5) левая и правая ножки А-В пучка, состоящие из волокон Пуркинье, благодаря которым импульсы достигают сократительного миокарда.

Проводящая система сердца образована двумя видами специализированных клеток.
Один вид клеток (Р-клетки) обладает автоматизмом, т.е. способностью спонтанно вырабатывать электрические импульсы.

Частота возникновения ипульсов зависит от места расположения Р-клеток – чем ближе находятся Р-клетки к началу проводящей системы, тем чаще возникают в них импульсы и, наоборот, чем дальше находятся Р-клетки от начала проводящей системы, тем реже могут возникать в них электрические импульсы.

Второй вид (Т-клетки) обладает проводимостью, т.е. способностью проведения возникающих импульсов к сократительному миокарду.

Проводящая система сердца начинается синусовым узлом, который расположен в верхней части правого предсердия. Его длина 10-20 мм, ширина 3-5 мм. Именно в нем возникают импульсы, которые вызывают возбуждение и сокращение всего сердца. Нормальный автоматизм синусового узла составляет 50-80 импульсов в минуту.

Синусовый узел является автоматическим центром I порядка.
Импульс, возникший в синусовом узле мгновенно распространяется по предсердиям, заставляя их сократиться.

Но распространиться дальше и сразу же возбудить желудочки сердца эта волна не может, так как миокард предсердий и желудочков разделен фиброзной тканью, которая не пропускает электрические импульсы. И только в одном месте этой преграды не существует. Туда и устремляется волна возбуждения.

Но именно в этом месте находится следующий узел проводящей системы, который называется атриовентрикулярным (длина около 5 мм, толщина – 2 мм). В нем происходит задержка волны возбуждения и фильтрация входящих импульсов.

Далее нижняя часть узла, утончаясь, переходит в пучок Гиса (длина 20 мм). В последующем пучок Гиса разделяется на две ножки – правую и левую.

Правая ножка проходит по правой стороне межжелудочковой перегородки и разветвляясь ее волокна (волокна Пуркинье) пронзают миокард правого желудочка.

Левая ножка проходит по левой половине межжелудочковой перегородки и делится на переднюю и заднюю ветви, которые снабжают волокнами Пуркинье миокард левого желудочка.

После задержки в результате прохождения атриовентрикулярного узла волна возбуждения, распространяясь по ножкам пучка Гиса и волокнам Пуркинье, мгновенно охватывает всю толщу миокарда желудочков, вызывая их сокращение. Задержка импульса имеет огромное значение и не дает сократиться предсердиям и желудочкам одновременно – сперва сокращаются предсердия, и только вслед за этим – желудочки сердца.

В атриовентрикулярном узле, так же как и в синусовом узле, имеются два вида клеток – Р и Т.

Атриовентрикулярный узел вместе с начальной частью пучка Гиса является автоматическим центром II порядка, который может самостоятельно вырабатывать импульсы с частотой 35-50 в минуту.

Конечная часть пучка Гиса, его ножки и волокна Пуркинье также обладают автоматизмом, однако могут вырабатывать импульсы лишь с частотой 15-35 в минуту и являются автоматическим центром III порядка.

Между автоматическими центрами I, II и III порядков возникают следующие взаимодействия. В норме импульс, возникающий в синусовом узле, распространяется на предсердия и желудочки, вызывая их сокращения.

Проходя на своем пути автоматические центры II и III порядков импульс каждый раз вызывает разрядку этих центров.

После этого в автоматических центрах II и III порядков снова начинается подготовка очередного импульса, которая каждый раз вновь прерывается после прохождения возбуждения из синусового узла.

По сути дела, в норме автоматический центр I порядка подавляет активность автоматических узлов II и III порядков. И только в случае отказа синусового узла или нарушения проведения его импульсов на нижележащие отделы включается автоматический узел II порядка, а при его отказе – автоматический узел III порядка.

22.Потенциал действия в клетках рабочего миокарда.

Клетки проводящей системы сердца и, в частности, клетки пейсмекера, обладающие автоматией могут спонтанно деполяризоваться до критического уровня. В таких клетках за фазой реполяризации следует фаза медленной диастолическои деполяризации (МДД), которая приводит к снижению МП до порогового уровня и возникновению ПД.

МДД — это местное, нераспространяющееся возбуждение, в отличие от ПД, который является распространяющимся возбуждением.

Таким образом, пейсмекерные клетки отличаются от кардиомиоцитов: 1) низким уровнем МП — около 50 — 70 мВ, 2) наличием МДД, 3) близкой к пикообразному потенциалу формой ПД, 4) низкой амплитудой ПД — 30 — 50 мВ без явления риверсии (овершута).

Клетки миокарда обладают возбудимостью, но им не присущаавтоматия. В период диастолы мембранный потенциал покоя этих клеток стабилен, и его величина выше (80—90 мВ), чем в клетках водителей ритма. Потенциал действия в этих клетках возникает под влиянием возбуждения клеток водителей ритма, которое достигает кардиомиоцитов, вызывая деполяризацию их мембран

Потенциал действия клетки рабочего миокарда. Быстрое развитие деполяризации и продолжительнаяреполяризация. Замедленнаяреполяри-зация (плато) переходит в быструю реполяризацию.

Потенциал действия клеток рабочего миокарда состоит из фазы быстрой деполяризации, начальной быстрой реполяризации, переходящей в фазу медленной реполяризации (фаза плато), и фазы быстрой конечной реполяризации (рис. 9.8).

Фаза быстрой деполяризации создается резким повышением проницаемости мембраны для ионов натрия, что приводит к возникновению быстрого входящего натриевого тока.

Последний, однако, при достижении мембранного потенциала 30—40 мВ инактивируется и в последующем, вплоть до инверсии потенциала (около +30 мВ) и в фазу «плато», ведущее значение имеют кальциевые ионные токи. Деполяризация мембраны вызывает активацию кальциевых каналов, в результате чего возникает дополнительный деполяризирующий входящий кальциевый ток

Рис. 9.9. Сопоставление потенциала действия и сокращения миокарда с фазами изменения возбудимости.

1 — фаза деполяризации; 2 — фаза начальной быстрой реполяризации; 3 — фаза медленной реполяризации (фаза плато); 4 — фаза конечной быстрой реполяризации; 5 — фаза абсолютной рефрактерности; 6 — фаза относительной рефрактерности; 7 — фаза супернормальной возбудимости.

Рефрактерность миокарда практически совпадает не только с возбуждением, но и с периодом сокращения. Конечная реполяризация в клетках миокарда обусловлена постепенным уменьшением проницаемости мембраны для кальция и повышением проницаемости для калия.

В результате входящий ток кальция уменьшается, а выходящий ток калия возрастает, что обеспечивает быстрое восстановление мембранного потенциала покоя. Длительность потенциала действия кардиомиоцитов составляет 300—400 мс, что соответствует длительности сокращения миокарда (рис. 9.9).

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/19_408809_shema-provodyashchey-sistemi-serdtsa.html

➺Проводящая система сердца

Проведение импульса через антриовентрикулярный узел. Сортировка импульса в АВ-узле

Сердце обладает автоматизмом — способностью самостоятельно сокращаться через определенные промежутки времени.

Это становится возможным благодаря возникновению электрических импульсов в самом сердце. Оно продолжает биться при перерезке всех нервов, которые к нему подходят.

Импульсы возникают и проводятся по сердцу с помощью так называемой проводящей системы сердца.

Рассмотрим компоненты проводящей системы сердца:

  • синусно-предсердный узел,
  • предсердно-желудочковый узел,
  • пучок Гиса с его левой и правой ножкой,
  • волокна Пуркинье.

Теперь подробнее.

1) синусно-предсердный узел  — источник возникновения электрических импульсов в норме. Именно здесь импульсы возникают и отсюда распространяются по сердцу (рисунок с анимацией внизу).

Cинусно-предсердный узел расположен в верхней части правого предсердия, между местом впадения верхней и нижней полой вены.

Слово “синус” в переводе означает “пазуха”, “полость”.

Фраза “ритм синусовый” в расшифровке ЭКГ означает, что импульсы генерируются в правильном месте — синусно-предсердном узле.

Нормальная частота ритма в покое — от 60 до 80 ударов в минуту.

Частота сердечных сокращений (ЧСС) ниже 60 в минуту называется брадикардией, а выше 90 — тахикардия. У тренированных людей обычно наблюдается брадикардия.

Интересно знать, что в норме импульсы генерируются не с идеальной точностью.

Существует дыхательная синусовая аритмия (ритм называется неправильным, если временной интервал между отдельными сокращениями на ≥ 10% превышает среднее значение).

При дыхательной аритмии ЧСС на вдохе увеличивается, а на выдохе уменьшается, что связано с изменением тонуса блуждающего нерва и изменением кровенаполнения отделов сердца при повышении и понижении давления в грудной клетке. Как правило, дыхательная синусовая аритмия сочетается с синусовой брадикардией и исчезает при задержке дыхания и увеличении ЧСС.

Дыхательная синусовая аритмия бывает преимущественно у здоровых людей, особенно молодых. Появление такой аритмии у лиц, выздоравливающих после инфаркта миокарда, миокардита и др., является благоприятным признаком и указывает на улучшение функционального состояния миокарда.

2) предсердно-желудочковый узел (атриовентрикулярный, AV) является, можно сказать, “фильтром” для импульсов из предсердий. Он расположен возле самой перегородки между предсердиями и желудочками.

В AV-узле самая низкая скорость распространения электрических импульсов во всей проводящей системе сердца. Она равна примерно 10 см/с (для сравнения: в предсердиях и пучке Гиса импульс распространяется со скоростью 1 м/с, по ножкам пучка Гиса и всем нижележащим отделам вплоть до миокарда желудочков — 3-5 м/с).

Задержка импульса в AV-узле составляет около 0.08 с, она необходима, чтобы предсердия успели сократиться раньше и перекачать кровь в желудочки.

Почему я назвал AV-узел “фильтром“? Есть аритмии, при которых нарушается формирование и распространение импульсов в предсердиях. Например, при мерцательной аритмии (= фибрилляция предсердий) волны возбуждения беспорядочно циркулируют по предсердиям, но AV-узел блокирует большинство импульсов, не давая желудочкам сокращаться слишком часто.

С помощью различных препаратов можно регулировать ЧСС, повышая проводимость в AV-узле (адреналин, атропин) или снижая ее (дигоксин, верапамил, бета-блокаторы).

Постоянная мерцательная аритмия бывает тахисистолической (ЧСС > 90), нормосистолической (ЧСС от 60 до 90) или брадисистолической формы (ЧСС < 60).

На скорой это одна из самых частых аритмий, ею страдает > 6% больных старше 60 лет.

Любопытно, что с фибрилляцией предсердий жить можно годами, а вот фибрилляция желудочков является смертельной аритмией, при ней без экстренной медицинской помощи больной умирает за 6 минут.

3) Пучок Гиса (= предсердно-желудочковый пучок) не имеет четкой границы с AV-узлом, проходит в межжелудочковой перегродке и имет длину 2 см, после чего делится на левую и правую ножки соответственно к левому и правому желудочку.

Поскольку левый желудочек работает интенсивнее и больше по размерам, то левой ножке приходится разделиться на две ветви — переднюю и заднюю.

Зачем это знать? Патологические процессы (некроз, воспаление) могут нарушать распространение импульса по ножкам и ветвям пучка Гиса, что видно на ЭКГ. В таких случаях в заключении ЭКГ пишут, например, “полная блокада левой ножки пучка Гиса”.

4) Волокна Пуркинье связывают конечные разветвления ножек и ветвей пучка Гиса с сократительным миокардом желудочков.

Способностью генерировать электрические импульсы (т.е. автоматизмом) обладает не только синусовый узел. Природа позаботилась о надежном резервировании этой функции.

Синусовый узел является водителем ритма первого порядка и генерирует импульсы с частотой 60-80 в минуту.

Если по какой-то причине синусовый узел выйдет из строя, станет активным AV-узел — водитель ритма 2-го порядка, генерирующий импульсы 40-60 раз в минуту.

Водителем ритма третьего порядка являются ножки и ветви пучка Гиса, а также волокна Пуркинье. Автоматизм водителя ритма третьего порядка равен 15-40 импульсов в минуту. Водитель ритма также называют пейсмекером (pacemaker, от англ. pace — скорость, темп).

В норме активен только водитель ритма первого порядка, остальные “спят”. Такое происходит, потому что электрический импульс приходит к другим автоматическим водителям ритма раньше, чем в них успевает сгенерироваться собственный.

Если автоматические центры не повреждены, то нижележащий центр становится источником сокращений сердца только при патологическом повышении его автоматизма (например, при пароксизмальной желудочковой тахикардии в желудочках возникает патологический источник постоянной импульсации, которая заставляет миокард желудочков сокращаться в своем ритме с частотой 140-220 в минуту).

Наблюдать работу пейсмекера третьего порядка можно также при полном блокировании проведения импульсов в AV-узле, что называется полной поперечной блокадой (= AV-блокада III степени). При этом на ЭКГ видно, что предсердия сокращаются в своем ритме с частотой 60-80 в минуту (ритм SA-узла), а желудочки — в своем с частотой 20-40 в минуту.

Источник: https://emhelp.jimdofree.com/%D1%88%D0%BF%D0%B0%D1%80%D0%B3%D0%B0%D0%BB%D0%BA%D0%B8-%D0%BF%D0%BE-%D1%8D%D0%BA%D0%B3/%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D1%8F%D1%89%D0%B0%D1%8F-%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0-%D1%81%D0%B5%D1%80%D0%B4%D1%86%D0%B0/

МедЗабота
Добавить комментарий