Минутный объем кровообращения. Минутный объем сердца

Методы определения систолического и минутного объемов крови

Минутный объем кровообращения. Минутный объем сердца

Определение систолического и минутного объема крови. Систолическим (ударным) объемом называется количество крови, выбрасываемое сердцем при каждом его сокращении.

Нормальная величина систолического объема колеблется в пределах 50 – 75 мл. Минутный объем – это количество крови, выбрасываемое сердцем в течение минуты.

У здоровых людей в состоянии покоя минутный объем составляет 3,5 – 8 л.

В клинической практике определяют минутный объем, а ударный объем высчитывают путем деления величины минутного объема на число сердечных сокращений в минуту.Наиболее точен прямой метод Фика, основанный на определении количества вещества, поступающего в кровь за 1 мин, и степени увеличения его концентрации в крови.

Так, концентрация кислорода в крови (О), прошедшей через сосуды легких, возрастает на величину, определяемую по артерио-веноз-ной разнице (А-В).

Зная потребление кислорода в 1 мин, которое определяется по его дефициту в выдыхаемом воздухе, и артериовенозную разницу, минутный объем (МО) рассчитывают по формуле: МО =O/A-BБолее распространены косвенные методы определения минутного объема: методы разведения красителей и радиоизотопный.

Обследуемому внутривенно вводят краску (синий Эванса) или вещества, меченные радиоактивными изотопами, а затем измеряют их концентрацию в артериальной крови. Зная количество введенного вещества, его концентрацию в крови и время прохождения через определенный отрезок сосудистого русла, по специальным формулам рассчитывают минутный объем.

Систолический объём и минутный объём – основные показатели, которые характеризуют сократительную функцию миокарда.

Систолический объём – ударный пульсовой объём – тот объём крови, который поступает из желудочка за 1 систолу.

Минутный объём – объём крови, который поступает из сердца за 1 минуту. МО = СО х ЧСС (частота сердечных сокращений)

У взрослого минутный объём приблизительно 5-7 л, у тренированного – 10 – 12 л. 

Факторы, влияющине на систолический объём и минутный объём:

масса тела, которой пропорциональна масса сердца. При массе тела 50-70 кг – объём сердца 70 – 120 мл; 

количество крови, поступающей к сердцу (венозный возврат крови) – чем больше венозный возврат, тем больше систолический объём и минутный объём; 

сила сердечных сокращений влияет на систолический объём, а частота – на минутный объём. 

Систолический объём и минутный объём определяются 3-мя следующими методами.

Рассчетные методы (формула Старра): Систолический объём и минутный объём рассчитывается с помощью: массы тела, массы крови, давления крови. Очень приблизительный метод.

Концентрационный метод – зная концентрацию любого вещества в крови и его объём – рассчитывают минутный объём (вводят опредлелённое количество индиферентного вещества).

Разновидность – метод Фика – определяется количество поступившего в организм за 1 минуту О2 (необходимо знать артериовенозную разницу по О2).

Инструментальные – кардиография (кривая регистрации электрического сопротивления сердца). Определяется площадь реограммы, а по ней – величина систолического объёма.

Дополнительно:

Методы определения минутного объёма крови

Наиболее точный способ определения минутного объема кровотока у человека предложен Фиком (1870). Он состоит в косвенном вычислении МОК, которое производят, зная разницу между содержанием кислорода в артериальной и венозной крови, объем кислорода, потребляемого человеком в минуту.

Допустим, что в 1 мин через легкие в кровь поступило 400 мл кислорода и количество кислорода в артериальной крови на 8 об.% больше, чем в венозной.

Это означает, что каждые 100 мл крови поглощают в легких 8 мл кислорода; следовательно, чтобы усвоить все количество кислорода, который поступил через легкие в кровь за минуту (в нашем примере 400 мл), необходимо, чтобы через легкие прошло 100×400/8=5000 мл крови. Это количество крови и составляет МОК, который в данном случае равен 5000 мл.

При использовании метода Фика необходимо брать смешанную венозную кровь из правой половины сердца.

Венозную кровь у человека берут из правой половины сердца при помощи катетера, вводимого в правое предсердие через плечевую вену.

Метод Фика, являясь наиболее точным, не получил широкого распространения в практике из-за технической сложности и трудоемкости (необходимость катетеризации сердца, пунктирование артерии, определение газообмена).

Для определения МОК разработан ряд других методов. Многие из них основаны на принципе разведения индикаторов, который состоит в том, что находят разведение и скорость циркуляции какого-либо вещества, введенного в вену. В настоящее время широко применяют некоторые краски и радиоактивные вещества.

Введенное в вену вещество проходит через правые отделы сердца, малый круг кровообращения, левые отделы сердца и поступает в артерии большого круга кровообращения, где и определяют его концентрацию. Сначала она волнообразно нарастает, затем падает.

Через некоторое время, когда порция крови, содержавшая максимальное количество вещества, вторично пройдет через левые отделы сердца, его концентрация в артериальной крови вновь немного увеличивается (так называемая волна рециркуляции).

Замечают время от момента введения вещества до начала рециркуляции и вычерчивают кривую разведения, т. е. изменения концентрации (нарастания и убыли) исследуемого вещества в крови.

Зная количество вещества, введенного в кровь и содержащегося в артериальной крови, а также время, потребовавшееся на прохождение всего количества введенного вещества через систему кровообращения, можно вычислить минутный объем кровотока в л/мин по формуле:

МОК=60×J/C×T,

где J – количество введенного вещества, мг; С – средняя концентрация вещества, вычисленная по кривой разведения, мг/л; Т – длительность первой волны циркуляции, с.

Используют также метод интегральной реографии. Реография (импендансография) – метод регистрации электрического сопротивления тканей человеческого тела электрическому току, пропускаемому через тело.

Чтобы не вызвать повреждения тканей, используют токи сверхвысокой частоты и очень небольшой силы.

Сопротивление крови значительно меньше, чем сопротивление тканей, поэтому увеличение кровенаполнения тканей значительно снижает их электрическое сопротивление.

Если регистрировать суммарное электрическое сопротивление грудной клетки в нескольких направлениях, то периодические резкие уменьшения его возникают в момент выброса сердцем в аорту и легочную артерию систолического объема крови. При этом величина уменьшения сопротивления пропорциональна величине систолического выброса.

Помня об этом и используя формулы, учитывающие размеры тела, особенности конституции и т. д., можно по реографическим кривым определить величину систолического объема крови, а умножив ее на число сердечных сокращений, – получить величину МОК.

В кардиохирургической практике для определения МОК используют методы оценки объемной скорости кровотока в аорте, так как через аорту протекает весь МОК, за исключением коронарного кровотока.

Дополнительно: Определенный интерес представляет применение реографии для определения систолического объема крови.

Этот способ заключается в измерении колебаний сопротивления тела человека токам высокой частоты на протяжении сердечного цикла. Падение сопротивления в систолу в общем пропорционально величине сердечного выброса.

Основываясь на этом факте и ведется расчет систолического объема крови (Fejfar и др., 1955; М. И. Тищенко, 1970).

Для проведения реографических исследований применяются различные схемы расположения электродов на теле испытуемого.

Проведение большинства реографических методов осложняется таким недостатком, как задержка дыхания, что было преодолено в так называемой методике интегральной реографии, предложенной М. И. Тищенко (1973).

Для расчета систолического объема крови у мужчин и у женщин с помощью этой методики автором были предложены следующие формулы, где амплитуда анакроты кривой, амплитуда калибровочного сигнала, – рост испытуемого.

С -длительность сердечного цикла, исходное сопротивление между электродами, длительность катокротической части кривой.

В последние годы широкое применение получил метод тетраполярной реографии для определения систолического объема крови у человека. Kubicek и др.

(1966) предложили следующую формулу для определения ударного объема крови по тстраполярной реограмме, где К-коэффициент, зависящий от места наложения электродов, от типа применяемого прибора (его рабочей частоты) и погрешности относительно прецизионного метода определения сердечного выброса, р – удельное сопротивление крови (в омах на см), L – расстояние между ток измеряющими электродами (см), Z – межэлектродный импеданс, Ad-амплитуда дифференцированной рсограммы, отнесенная к амплитуде калибровочного сигнала, Ти – время изгнания крови. Современная аппаратура, позволяющая проводить калибровку дифференцированной реограммы, дает возможность точно измерить все физические величины, входящие в формулу Кубичека.

По данным Ю. Т. Пушкаря и соавт. (1977), применявших реоплетизмограф РПГ2-02 отечественного производства и сопоставлявших величины систолического объема крови, полученные с помощью реографин и методом Фика у больных людей, наблюдалась высокая корреляционная связь.

По нашим данным (полученным совместно с 3. Б. Бе-лоцерковским и Я. X.

Тийдусом), у здоровых высококвалифицированных спортсменов в условиях покоя между величинами ударного объема крови, определенными методом тетраполярной реографии и методом возвратного дыхания углекислотой имела место средняя степень связи (г=0,51).

Тетраполярная реографии при динамическом обследовании позволяет получить достаточно надежные данные. При физической нагрузке данная методика не применяется в связи с помехами, возникающими от смещений электродов по отношению к участкам их наложения на теле спортсмена.

Источник: http://ifreestore.net/5267/153/

Показатели работы сердца

Минутный объем кровообращения. Минутный объем сердца

ОСНОВНЫЕ Показатели работы сердца.

Основной функцией сердца является нагнетание крови в систему сосудов. Насосная функция сердца характеризуется несколькими показателями. Одним из важнейших показателей работы сердца является минутный объем кровообращения (МОК) – количество крови, выбрасываемое желудочками сердца в минуту.

МОК левого и правого желудочков одинаков. Синонимом понятия МОК является термин «сердечный выброс» (СВ). МОК – это интегральный показатель работы сердца, зависящий от величины систолического объема (СО) – количества крови (мл; л), выбрасываемого сердцем за одно сокращение, и ЧСС.

Таким образом, МОК (л/мин) = СО (л) х ЧСС (уд/мин). В зависимости от характера деятельности человека в данный момент времени (особенности физической работы, поза, степень психоэмоционального напряжения и др.) доля вклада ЧСС и СО в изменения МОК различна.

Ориентировочные величины ЧСС, СО и МОК в зависимости от положения тела, пола, физической подготовленности и уровня физической активности представлены в табл. 7.1.

Частота сердечных сокращений

ЧСС в покое. ЧСС – один из самых информативных показателей состояния не только сердечно-сосудистой системы, но и всего организма в целом.

Начиная с рождения и до 20-30 лет ЧСС в покое снижается со 100-110 до 70 уд/мин у молодых нетренированных мужчин и до 75 уд/мин у женщин.

В дальнейшем, с увеличением возраста, ЧСС незначительно возрастает: у 60-76-летних в покое по сравнению с молодыми на 5-8 уд/мин.

ЧСС при мышечной работе. Единственной возможностью повысить доставку кислорода к работающим мышцам является увеличение объема крови, поступающей к ним в единицу времени. Для этого должен возрасти МОК.

Поскольку ЧСС прямо влияет на величину МОК, то повышение ЧСС при мышечной работе является обязательным механизмом, направленным на удовлетворение значительно возрастающих нужд метаболизма.

Изменения ЧСС при работе показаны на рис. 7.6.

Если мощность циклической работы выразить через величину потребляемого кислорода (в процентах от величины максимального потребления кислорода – МПК), то ЧСС возрастает в линейной зависимости от мощности работы (потребления Ог, рис. 7.7). У женщин при условии равного с мужчинами потребления Ог ЧСС обычно на 10-12 уд/мин выше.

Наличие прямо пропорциональной зависимости между мощностью работы и величиной ЧСС делает частоту пульса важным информативным показателем в практической деятельности тренера и педагога.

При многих видах мышечной деятельности ЧСС – точный и легкоопределяемый показатель интенсивности выполняемых физических нагрузок, физиологической стоимости работы, особенностей протекания периодов восстановления.

Для практических нужд необходимо знать величину максимальной ЧСС у лиц разного пола и возраста. С возрастом максимальные величины ЧСС как у мужчин, так и у женщин снижаются (рис. 7.8.).

Точную величину ЧСС у каждого конкретного человека можно определить лишь опытным путем, регистрируя частоту пульса во время работы возрастающей мощности на велоэргометре.

Практически для ориентировочного суждения о максимальной ЧСС человека (независимо от пола) используют формулу: ЧССмаКс = 220 – возраст (в годах).

Систолический объем сердца

Систолический (ударный) объем сердца – это количество крови, выбрасываемое каждым желудочком за одно сокращение. Наряду с ЧСС СО оказывает существенное влияние на величину МОК. У взрослых мужчин СО может меняться от 60-70 до 120-190 мл, а у женщин – от 40-50 до 90-150 мл (см. табл. 7.1).

СО – это разность между конечно-диастолическим и конечно-систолическим объемами.

Следовательно, увеличение СО может происходить как посредством большего заполнения полостей желудочков в диастолу (увеличение конечно-диастолического объема), так и посредством увеличения силы сокращения и уменьшения количества крови, остающейся в желудочках в конце систолы (уменьшение конечно-систолического объема). Изменения СО при мышечной работе.

В самом начале работы из-за относительной инертности механизмов, приводящих к увеличению кровоснабжения скелетных мышц, венозный возврат возрастает сравнительно медленно. В это время увеличение СО происходит в основном благодаря увеличению силы сокращения миокарда и уменьшению конечно-систолического объема.

По мере продолжения циклической работы, выполняемой в вертикальном положении тела, благодаря значительному увеличению потока крови через работающие мышцы и активации мышечного насоса, возрастает венозный возврат к сердцу.

Вследствие этого конечно-диастолический объем желудочков у нетренированных лиц со 120-130 мл в покое повышается до 160-170 мл, а у хорошо тренированных спортсменов даже до 200-220 мл. В это же время происходит увеличение силы сокращения сердечной мышцы. Это, в свою очередь, приводит к более полному опорожнению желудочков во время систолы. Конечно-систолический объем при очень тяжелой мышечной работе может уменьшиться у нетренированных до 40 мл, а у тренированных до 10-30 мл. То есть увеличение конечно-диастолического объема и уменьшение конечно-систолического приводят к значительному повышению СО (рис. 7.9).

В зависимости от мощности работы (потребления О2) происходят довольно характерные изменения СО. У нетренированных людей СО максимально увеличивается по сравнению с его уровне м в покое на 50-60%.

У большинства людей при работе на велоэргометре СО достигает своего максимума при нагрузках с потреблением кислорода на уровне 40-50% от МПК (см. рис. 7.7).

Иначе говоря, при увеличении интенсивности (мощности) циклической работы в механизме увеличения МОК в первую очередь используется более экономичный путь увеличения выброса крови сердцем за каждую систолу. Этот механизм исчерпывает свои резервы при ЧСС, равной 130-140 уд/мин.

У нетренированных людей максимальные величины СО уменьшаются с возрастом (см. рис. 7.8). У людей старше 50 лет, выполняющих работу с тем же уровнем потребления кислорода, что и 20-летние, СО на 15-25% меньше. Можно считать, что возрастное уменьшение СО является результатом снижения сократительной функции сердца и, по-видимому, уменьшения скорости расслабления сердечной мышцы.

Минутный объем кровообращения

Важным показателем состояния сердца является минутный объем кровотока, или минутный объем кровообращения (МОК). Нередко используют синоним понятия МОК – сердечный выброс (СВ). Величина МОК, являясь производной от СО и ЧСС (МОК = СО х ЧСС), зависит от многих факторов (см.

табл. 7.1).

Среди них ведущее значение имеют размеры сердца, состояние энергетического обмена в покое, положение тела в пространстве, уровень тренированности, величины физического или психоэмоционального напряжения, вид работы (статическая или динамическая), объем активных мышц.

В покое в положении лежа МОК у нетренированных и тренированных мужчин составляет 4,0-5,5 л/мин, а у женщин – 3,0-4,5 л/мин (см. табл. 7.1).

В связи с тем, что МОК зависит от размера тела, при необходимости сравнения МОК у людей разного веса используют относительный показатель – сердечный индекс – отношение величины МОК (в л/мин) к площади поверхности тела (в м2). Площадь поверхности тела определяют по специальной номограмме, исходя из данных о весе и росте человека. У здорового человека в условиях основного обмена сердечный индекс обычно равен 2,5-3,5 л/мин/м2. В некоторых ситуациях (например, при низкой температуре окружающей среды) даже в условиях физического покоя возрастает энергетический обмен в организме.

Это приводит к возрастанию ЧСС и, соответственно, МОК.

В положении стоя у всех людей МОК обычно на 25-30% меньше, чем лежа (см. табл. 7.1).

Это связано с тем, что в вертикальном положении тела значительные объемы крови скапливаются в нижней половине туловища. Вследствие этого заметно уменьшается СО.

МОК и общий объем циркулирующей крови. Общий объем крови, находящейся в кровеносных сосудах, называется объемом циркулирующей крови (ОЦК).

ОЦК – это важный параметр, определяющий давление, при котором происходит наполнение сердца кровью во время диастолы, а значит, и величину систолического объема.

Величина ОЦК может претерпевать значительные изменения при переходе тела человека в вертикальное положение, при мышечных нагрузках, при воздействиях гормональных факторов, изменениях степени тренированности, окружающей температуры и т.д.

У взрослого человека около 84% всей крови находится в большом круге, 9% – в малом (легочном) круге и 7% – в сердце. Около 60-70% всей крови содержится в венозных сосудах.

Изменение МОК при мышечной работе. В условиях мышечной деятельности запросы мышц в кислороде возрастают пропорционально мощности выполняемой работы. При этом общее потребление организмом кислорода может возрастать в 10 и более раз. Вполне естественно, что это требует значительного увеличения МОК.

Зависимость между величиной потребления кислорода (или мощностью работы) и МОК, вплоть до его предельных величин, носит линейный характер (см. рис. 7.7). Как уже отмечалось, МОК зависит от величины СО и ЧСС (МОК = СО х ЧСС). При мышечной работе увеличение МОК обусловлено возрастанием как СО, так и ЧСС.

Конкретная величина МОК зависит от многих факторов. В частности, при одинаковой мощности работы в позе сидя или стоя МОК меньше, чем при работе в горизонтальном положении (рис. 7.10). При предельных аэробных нагрузках МОК у тренированных мужчин и женщин значительно выше, чем у нетренированных.

Максимальные величины МОК у нетренированных мужчин и женщин уменьшаются с возрастом (см. рис. 7.8). При прочих равных условиях (пол, возраст, тренированность, положение исследуемого, окружающая температура и другие факторы) МОК зависит от объема активной мышечной массы и характера выполняемой работы.

При динамической работе, в которой участвуют небольшие мышечные группы (например, работа одной или двумя руками), МОК меньше, чем при работе более'крупных мышц ног. При статической работе в отличие от динамической МОК почти не меняется. Это связано с тем, что кровообращение в мышцах практически прекращено.

Приток крови к сердцу либо не меняется, либо даже может уменьшаться. Небольшие увеличения МОК, которые отмечают при изометрических сокращениях, связаны с заметным увеличением ЧСС при такого рода работе.

Источник: https://studfile.net/preview/5877619/

Насосная функция сердца: параметры оценки (ЧСС, конечно-диастолический, конечно-систолический объемы, систолический объем, минутный объем кровообращения), их расчет и нормальные величины

Минутный объем кровообращения. Минутный объем сердца

Сердце нагнетает кровь в сосудистую систему благодаря периодическим синхронным сокращениям мышечных клеток, составляющих миокард предсердий и желудочков, а также наличию атриовентрикулярных (пред-сердно-желудочковых), аортального (в устье аорты) и легочного (в устье легочной артерии) клапанов.

Лишь наличие этих четырех клапанов, открытие и закрытие которых происходит прежде всего вследствие разницы давлений в полостях, разделенных этими клапанами, позволяет сердцу эффективно работать как насосу, а крови двигаться в строго заданном направлении.

Каждый сердечный цикл состоит из двух основных периодов: сокращения, называемого систолой, и расслабления, называемого диастолой. Сокращения сердца сопровождаются характерными изменениями давления в его полостях и выходящих из него аорте и легочной артерии. Сокращение сердца начинается с систолы предсердий, длящейся 0,1 с.

После окончания систолы предсердий начинается систола желудочков, в общей продолжительности которой (0,33 с) выделяют период напряжения (0,08 с) и период изгнания крови из желудочков (0,25 с). Диастола желудочков включает в себя период изометрического расслабления и период наполнения. Наполнение сердца кровью обуславливают несколько причин.

Одной из них является остаточная движущая сила венозной крови, вызванная предыдущим сокращением сердца. Благодаря наличию этой силы среднее давление в полых венах выше, чем в правом предсердии. Вторая причина поступления крови в сердце – присасывание ее грудной клеткой, особенно во время вдоха, когда снижается внутригрудное давление.

Третьей причиной притока крови к сердцу, особенно при мышечной деятельности, является сокращение скелетных мышц и периодическое сдавление вен. Благодаря наличию в венах клапанов работает своеобразный мышечный насос. При сдавливании венозных сосудов кровь продвигается по ним вверх к сердцу. Движению крови в обратном направлении препятствуют закрытые клапаны вен.

В момент расслабления мышц стенки вен расправляются и они вновь наполняются кровью. Благодаря многократному повторению этого процесса кровь активно продвигается к сердцу. В покое во время диастолы наполнение желудочков кровью увеличивает их объем до 120-130 мл. Объем крови, содержащийся в желудочках в конце диастолы, называется конечно-диастолическим объемом.

В покое за время систолы сердце выбрасывает в аорту около 70 мл крови. Этот объем называется систолическим (СО), или ударным, объемом (УО). Объем крови, остающийся в сердце после систолы (50-60 мл), называется конечно-систолическим объемом. При напряженной мышечной деятельности конечный систолический объем может уменьшиться до 10-30 мл.

Вместе с тем при работе, благодаря значительному увеличению притока крови к сердцу в диастолу, конечный диастолический объем может возрастать у тренированных лиц до 200-250 мл. В условиях значительного увеличения конечного диасто-лического объема и уменьшения конечного систолического систолический объем по сравнению с покоем при мышечной работе может возрастать более чем вдвое.

Минутный объем кровообращения характеризует общее количество крови, перекачиваемое правым и левым отделом сердца в течение одной минуты в сердечно-сосудистой системе. Размерность минутного объема кровообращения — л/мин или мл/мин.

Чтобы нивелировать влияние индивидуальных антропометрических различий на величину МОК, его выражают в виде сердечного индекса. Сердечный индекс — это величина минутного объема кровообращения, деленная на площадь поверхности тела в м . Размерность сердечного индекса — л/(мин • м2).

Частота сердечных сокращений (пульс) в покое составляет от 60 до 80 ударов в минуту. Регуляторные влияния, вызывающие изменения частоты сердечных сокращений, называются хронотропными, а изменения силы сокращений сердца — инотропными.

Повышение частоты сердечных сокращений является важным адаптационным механизмом увеличения МОК, осуществляющим быстрое приспособление его величины к требованиям организма. При некоторых экстремальных воздействиях на организм сердечный ритм может повышаться в 3—3,5 раза по отношению к исходному.

51) Сердечный цикл и его фазы. Давление крови в камерах сердца в различные фазы. Минутный объем крови в покое и при физической нагрузке.Работа сердца представляет собой непрерывное чередование периодов сокращения (систола) и расслабления (диастола). Сменяющие друг друга систола и диастола составляют сердечный цикл.

Поскольку в покое частота сокращений сердца составляет 60—80 циклов в минуту, то каждый из них продолжается около 0,8 с. При этом 0,1 с занимает систола предсердий, 0,3 с — систола желудочков, а остальное время — общая диастола сердца. К началу систолы миокард расслаблен, а сердечные камеры заполнены кровью, поступающей из вен.

Атриовентрикулярные клапаны в это время раскрыты и давление в предсердиях и желудочках практически одинаково. Генерация возбуждения в синоатриальном узле приводит к систоле предсердий, во время которой за счет разности давлений конечно-диастолический объем желудочков возрастает приблизительно на 15 %. С окончанием систолы предсердий давление в них понижается.

Поскольку клапаны между магистральными венами и предсердиями отсутствуют, во время систолы предсердий происходит сокращение кольцевой мускулатуры, окружающей устья полых и легочных вен, что препятствует оттоку крови из предсердий обратно в вены. В то же время систола предсердий сопровождается некоторым повышением давления в полых венах.

Большое значение имеет обеспечение турбулентного характера потока крови, поступающего из предсердий в желудочки, что способствует захлопыванию атриовентрикулярных клапанов. Максимальное и среднее давление в левом предсердии во время систолы составляют соответственно 8— 15 и 5—7 мм рт. ст., в правом предсердии — 3—8 и 2—4 мм рт. ст. (рис. 9.11).

С переходом возбуждения на атриовентрикулярный узел и проводящую систему желудочков начинается систола последних. Ее начальный этап (период напряжения) продолжается 0,08 с и состоит из двух фаз. Фаза асинхронного сокращения (0,05 с) представляет собой процесс распространения возбуждения и сокращения по миокарду. Давление в желудочках при этом практически не меняется.

В процессе начинающегося синхронного сокращения миокарда желудочков, когда давление в них возрастает до величины, достаточной для закрытия атриовентрикулярных клапанов, но недостаточной для открытия полулунных, наступает фаза изоволюмического, или изометрического, сокращения.

Дальнейшее повышение давления приводит к раскрытию полулунных клапанов и началу периода изгнания крови из сердца, общая длительность которого составляет 0,25 с.

Этот период состоит из фазы быстрого изгнания (0,13 с), во время которой давление в желудочках продолжает расти и достигает максимальных значений, и фазы медленного изгнания (0,13 с), во время которой давление в желудочках начинает снижаться, а после окончания сокращения оно резко падает.

В магистральных артериях давление снижается значительно медленнее, что обеспечивает захлопывание полулунных клапанов и предотвращает обратный ток крови. Промежуток времени от начала расслабления желудочков до закрытия полулунных клапанов называется протодиастолическим периодом.

После окончания систолы желудочков возникает диастолический период желудочков сердца (диастола), длящаяся 0,47 с. Он включает в себя следующие периоды и фазы (при частоте сердечных сокращений 75 в минуту): Период расслабления (0,12 с), состоящий из: — протодиастолического интервала — 0,04 с (время от начала расслабления миокарда желудочков до закрытия полулунных клапанов); — фазы изометрического (изоволюмического) расслабления — 0,08 с (время от закрытия полулунных клапанов до открытия атриовентрикулярных). Период наполнения (0,35 с) состоящий из: — фазы быстрого наполнения — 0,08 с (с момента открытия атриовентрикулярных клапанов); — фазы медленного наполнения — 0,18 с; — фазы наполнения желудочков, обусловленной систолой предсердий — 0,09 с.

К концу систолы желудочков и началу диастолы (с момента закрытия полулунных клапанов) в желудочках содержится остаточный, или резервный, объем крови (конечно-систолический объем). В это же время начинается резкое падение давления в желудочках (фаза изоволюмического, или изометрического, расслабления).

Способность миокарда быстро расслабляться является важнейшим условием для наполнения сердца кровью. Когда давление в желудочках (начальное диастолическое) становится меньше давления в предсердиях, открываются атриовентрикулярные клапаны и начинается фаза быстрого наполнения, во время которой кровь с ускорением поступает из предсердий в желудочки.

Во время этой фазы в желудочки поступает до 85 % их диастолического объема. По мере заполнения желудочков скорость их наполнения кровью снижается (фаза медленного наполнения). В конце диастолы желудочков начинается систола предсердий, в результате чего в желудочки поступает еще 15 % их диастолического объема.

Таким образом, в конце диастолы в желудочках создается конечно-диастолический объем, которому соответствует определенный уровень конечно-диастолического давления в желудочках. Конечно-диастолический объем и конечно-диастолическое давление составляет так называемую преднагрузку сердца, которая является определяющим условием для растяжения волокон миокарда, т. е.

реализации закона Франка—Старлинга. Частота генерации возбуждения клетками проводящей системы и соответственно сокращений миокарда определяется длительностью рефрактерной фазы, возникающей после каждой систолы. Как и в других возбудимых тканях, в миокарде рефрактерность обусловлена инактивацией натриевых ионных каналов, возникающей в результате деполяризации (см.

рис. 9.9). Для восстановления входящего натриевого тока необходим уровень реполяризации около 40 мВ. До этого момента имеет место период абсолютной рефрактерности, который продолжается около 0,27 с. Далее следует период относительной рефрактерности (см. рис. 9.

9), в течение которого возбудимость клетки постепенно восстанавливается, но остается еще сниженной (длительность 0,03 с). В этот период сердечная мышца может ответить дополнительным сокращением, если стимулировать ее очень сильным раздражителем.

За периодом относительной рефрактерности следует короткий период супернормальной возбудимости (см. рис. 9.9). В этот период возбудимость миокарда высока и можно получить дополнительный ответ в виде сокращения мышцы, нанося на нее подпороговый раздражитель.

Длительный рефрактерный период имеет для сердца важное биологическое значение, так как он предохраняет миокард от быстрого или повторного возбуждения и сокращения. Этим исключается возможность тетанического сокращения миокарда и нарушения нагнетательной функции сердца.

К тетаническому сокращению и утомлению в физиологическом понимании этого термина миокард не способен.

При раздражении сердечная ткань ведет себя как функциональный синцитий, и сила каждого сокращения определяется по закону «все или ничего», согласно которому при возбуждении, превышающем пороговую величину, сокращающиеся волокна миокарда развивают максимальную силу, не зависящую от величины над-порогового раздражителя. Преждевременное сокращение всего сердца или его частей в результате дополнительного возбуждения миокарда вызывает экстрасистолу. По месту возникновения дополнительного возбуждения различают синусовые, предсердные, атриовентрикулярные и желудочковые экстрасистолы.

Минутный объем сердца (или сердечный выброс) — это количество крови, выбрасываемое за 1 мин желудочками. У взрослого человека в покое он равен в среднем 4,5-5 л. Сердечный выброс правого и левого желудочков в среднем одинаковый, т.е.

объем крови, проходящий через левое сердце, равен объему, проходящему через правое сердце. Если бы это было не так, то кровь из одного круга кровообращения постепенно уходила и накапливалась бы в другом круге кровообращения.

При значительной физической нагрузке минутный объем сердца доходит до 30 л.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник: https://zdamsam.ru/a67677.html

Сердечный выброс крови из сердца: норма, диагностика и лечение

Минутный объем кровообращения. Минутный объем сердца

© А. Олеся Валерьевна, к.м.н., практикующий врач, преподаватель медицинского ВУЗа, специально для СосудИнфо.ру (об авторах)

Сердце — один из главных «тружеников» нашего организма. Ни на минуту не останавливаясь в течение жизни, оно перекачивает гигантское количество крови, обеспечивая питанием все органы и ткани тела.

Важнейшими характеристиками эффективности кровотока являются минутный и ударный объем сердца, величины которых определяются множеством факторов как со стороны самого сердца, так и регулирующих его работу систем.

Минутный объем крови (МОК) — величина, характеризующая количество крови, которое отправляет миокард в кровеносную систему в течение минуты. Он измеряется в литрах в минуту и равняется примерно 4-6 литрам в состоянии покоя при горизонтальном положении тела. Это значит, что всю кровь, содержащуюся в сосудах тела, сердце способно перекачать за минуту.

Ударный объем сердца

Ударный объем (УО) — это тот объем крови, который сердце выталкивает в сосуды за одно свое сокращение. В состоянии покоя у среднестатистического человека он составляет около 50-70 мл.

Этот показатель напрямую связан с состоянием сердечной мышцы и ее способностью сокращаться с достаточной силой. Увеличение ударного объема происходит при возрастании пульса (до 90 и более мл).

У спортсменов эта цифра намного выше, чем у нетренированных лиц даже при условии примерно одинаковой частоты сердечных сокращений.

Объем крови, который миокард может выбросить в магистральные сосуды, не постоянен. Он определяется запросами органов в конкретных условиях. Так, при интенсивной физической нагрузке, волнении, в состоянии сна органы потребляют разное количество крови. Отличаются и влияния на сократимость миокарда со стороны нервной и эндокринной систем.

При повышении частоты сокращений сердца, возрастает сила, с которой миокард выталкивает кровь, и объем жидкости, попадающей в сосуды, благодаря значительному функциональному резерву органа.

Резервные возможности сердца довольно высоки: у нетренированных людей при нагрузке сердечный выброс в минуту достигает 400%, то есть минутный объем выбрасываемой сердцем крови возрастает до 4 раз, у спортсменов этот показатель и того выше, у них минутный объем увеличивается в 5-7 раз и достигает 40 литров в минуту.

Таблица – Гемодинамические показатели сердечно-сосудистой системы

ПоказателиСокращенные обозначения показателейНормальные значения
Ударный объемУО60,0—100,0 мл
Сердечный выброс
(син.

: минутный объем сердца)

СВ (МОС)4,0—6,0 л/мин
Сердечный индексСИ2,5—3,6 л/мин/м2
Фракция выбросаФВ55-75%
Центральное венозное давлениеЦВД40—120 мм вод.

ст

Диастолическое давление в легочной артерииДДЛА9—16 мм рт.ст.
Давление в левом предсердииДЛП1-10 мм рт.ст.
Давление заклинивания легочной артерииДЗЛА6—12 мм рт.ст.
Диастолическое давление в аортеДДА70—80 мм рт.ст.

Системное артериальное давление: Артериальное давление систолическое Артериальное давление диастолическоеСАД АД систол. АД диаст.100—139 мм рт.ст.
60—89 мм рт.ст.
Артериальное давление (среднее)АД средн.70—105 мм рт.ст.
Общее периферическое сосудистое сопротивлениеОПСС1200—1600 дин-с-см-5
Легочное сосудистое сопротивлениеЛСС30—100 дин-с-см’5
Показатель сократимости миокарда (определяется в фазу изоволюмического сокращения)dp/dt максмм рт.ст.

Показатель расслабляемости миокарда (определяется в фазу изоволюмического расслабления)dp/dt максмм рт.ст./с
Частота сердечных сокращенийЧСС60—70 уд. /мин (муж.);
70—80 уд./мин (жен.)

Методы измерения

Изменение показателя МОК происходит из-за:

  • величины УО;
  • частоты сердечных сокращений.

СО = 90,97 0,54 * ПД — 0,57 * ДД — 0,61 * В

СО — систолический объем, мл; ПД — пульсовое давление, мм рт. ст.; ДД — диастолическое давление, мм рт. ст.; В — возраст. Чтобы определить ПД, из систолического вычитают диастолическое.

Для измерения МОК применяют прямые и непрямые методы. Прямой метод заключается в катетеризации миокарда. В сердечную полость вводят флоуметр. Обычно используют для оценки результатов аорто-коронарного шунтирования и других операций.

Непрямые методы:

  • Метод Фика. МОК рассчитывается следующим образом: объем кислорода, потребляемого за минуту, делят на разницу между количеством кислорода артериальной и венозной крови. Полученную величину умножают на 100%.
  • Разведение индикаторов. С кровью смешивают определенный индикатор и измеряют его концентрацию. Затем сравнивают первоначальный и полученный объем вещества. Их соотношение будет минутным объемом крови.
  • Ультразвуковая флоуметрия. С помощью ультразвука измеряются ритмические процессы, пропускная способность сердечных сосудов. Результаты обрабатываются компьютером.
  • Тетраполярная грудная реография. Основана на измерении сопротивления тканей во время прохождения пульсовых волн. При наполнении тканей кровью сопротивление уменьшается.

Посмотрите видео про минутный объем крови

На основании результатов доктор оценивает сократительную работу миокарда, которая влияет на снабжение кислородом всех тканей. Особенно важно исследовать эти величины у профессиональных спортсменов, у людей, имеющих проблемы с сердцем.

Сердечный выброс

Сердечный выброс (СВ) (наряду с СВ нередко используют понятие «минутный объем сердца» — МОС).

Если наполнение желудочков поддерживается на достаточном уровне, то величина сердечного выброса при любом ударном объеме зависит от частоты сердечных сокращений (ЧСС). Формула расчета: СВ или МОС= (УО • ЧСС) л/мин.

Таким образом, СВ является функцией УО и ЧСС. Увеличение СВ при тахикардии требует более эффективного диастолического наполнения сердца.

При увеличении частоты сердечных сокращений относительное время диастолы уменьшается по сравнению с продолжительностью систолы. Однако в нормально функционирующем сердце, которое сокращается в пределах 170 уд/мин, его наполнение не уменьшается в связи с укорочением диастолы.

В интактном сердце при тахикардии процесс расслабления сердечной мышцы ускоряется, что обеспечивает более быстрое и полное наполнение сердца кровью в течение укороченных диастолических периодов.

Этот эффект частично опосредуется через стимуляцию p-рецепторов катехоламинами, которые повышают релаксацию кардиомиоцитов за счет ускоренного удаления из них внутриклеточного Са2+.

При чрезмерной тахикардии (более 170 уд/мин) подобная полная диастолическая релаксация может не произойти, а следовательно и дальнейшее увеличение СВ.

Ударный и минутный объем сердца и крови: суть, от чего зависят, расчет

Все материалы публикуются под авторством, либо редакцией профессиональных медиков ( об авторах ), но не являются предписанием к лечению. Обращайтесь к специалистам!

© При использовании материалов ссылка или указание названия источника обязательны.

А. Олеся Валерьевна, к.м.н., практикующий врач, преподаватель медицинского ВУЗа

Источник: https://pb17.ru/diagnostika/minutnyj-obem-serdca.html

МедЗабота
Добавить комментарий