Главный узел автоматии сердца расположен в

Автоматия сердца человека: определение, описание, узлы и градиент

Главный узел автоматии сердца расположен в

Автоматия сердца представляет собой ритмическое сокращение органа под действием импульсов, возникающих в нем без воздействия раздражителей извне. Автоматия присуща всему органу и отдельным частям, но не сердечной мышце. Есть доказательство этого явления – ритмические сокращения органа животных и человека, изолированного от всего и вынесенного за пределы организма.

Водители ритма первого порядка

При определении того, что понимают под автоматией сердца, было обнаружено, что нервные импульсы способны генерироваться в клетках атипического миокарда.

Если человек здоров, то этот процесс наблюдается рядом с синоатриальным узлом из-за отличия клеток по свойствам и строению от других структурных составляющих. Они располагаются группами, имеют форму веретена, и их окружает базальная мембрана.

Второе название этих клеток – водители ритма первого порядка (пейсмекеры). Процессы обмена в них протекают с высокой скоростью, и по этой причине метаболиты остаются в межклеточной жидкости, не успевая выноситься.

Помимо этого, характерные свойства следующие:

  • Довольно высокая проницаемость для ионов кальция и натрия.
  • Маленькая величина мембранного потенциала.

Из-за разницы в концентрации натрия и калия отмечается незначительная активность функционирования натрий-калиевого насоса.

Довольно долгое время автоматия сердца до конца не была исследована, даже несмотря на повышенный интерес научных деятелей к этому процессу. Метод лигатур Станниуса – известный цикл опытов, проведенных на основе удаления некоторых частей сердца лягушки наложением перевязок. В результате выяснилось, что в органе присутствует 2 центра автоматии как минимум.

Один из них располагается в области венозного синуса, способствует ритмизации сокращений, второй – находится в части между желудочком и предсердиями (его еще называют скрытым).

Его работа начинается только после того, как исключается 1 центр. Мышца сердца, которая отдалена от обоих центров, работает – сокращается – самостоятельно.

Таким образом, автоматия сердца человека связана с импульсами, исходящими от этих центров.

Методика Ландергорфа

С целью сокращения вынесенного за пределы организма сердца используется способ Ландергорфа. Смысл заключается в следующем:

  1. Сердце вырезают и в аорту вставляют канюлю, которая соединяется с сосудом из стекла.
  2. В сосуд наливается раствор Рингера вместе с глюкозой, или же возможно добавление дефибринированной крови.
  3. Раствор насыщается кислородом и нагревается до определенной температуры (около 48 градусов Цельсия).
  4. Жидкость начинает течь под давлением в аорту, клапаны перекрываются, и жидкость направляется в венечные артерии, функция которых – питание всего органа.

При таких условиях орган животного или же человека способен работать длительное время, это и есть автоматия сердца. Используя этот метод, можно вернуть импульсы сердца, которое уже остановилось несколько часов назад.

В начале 20 века впервые получилось оживить орган маленького ребенка, а уже позже восстановили работу сердца, которое не функционировало почти 48 часов.

После пропускания раствора через сосуды сердцебиение сохранялось около 15 часов.

Описание процесса автоматии

Автоматия сердца человека начинается с фазы диастолы, ее проявление – движение натрия внутрь клетки. Мембранный потенциал при этом значительно снижается, величина стремится к минимальному уровню деполяризации. Уменьшается заряд мембраны, и начинается медленная деполяризация диастолы.

Открываются каналы для кальция и натрия в фазу быстро протекающей деполяризации, ионы начинают активно направляться к клетке. Вследствие этого заряд сначала резко снижается и доходит до нулевой отметки, после чего сменяется противоположным.

Натрий движется до тех пор, пока не будет достигнуто равновесие по его ионам (электрохимическое).

Наступает фаза плато. Здесь продолжается движение кальция. Ткань сердца остается невозбудима в этот момент. При достижении равновесия по соответствующим ионам фаза заканчивается и возникает реполяризация, что означает возвращение мембранного заряда к первоначальной отметке.

Узлы автоматии сердца

Особое место в сложном процессе занимают узлы автоматии сердца. Узел первого порядка называется синоатриальным. Это водитель ритма первого порядка, который обеспечивает нормальную частоту сокращений сердца.

Располагается рядом с местом впадения верхней полой вены. Его структура – малое число волокон мышц сердца с нейронными окончаниями. Узлом второго порядка называют атриовентрикулярный узел. Это скрытый водитель ритма второго порядка.

Узел третьего порядка представлен клетками проводящей вентрикулярной системы.

Все водители ритма низшего порядка поддерживают частоту сокращений органа, если присутствует полная блокада сердца. При этом частота сокращений желудочков приближается к минимальной отметке, а пациентам вживляют кардиостимулятор электрического типа, то есть искусственный водитель ритма.

Возникновение потенциалов

Потенциал синоатриального узла отличается от обычного меньшей амплитудой – на 50 мВ. В нормальном состоянии потенциалы появляются в узле из-за присутствия клеток, являющихся водителями ритма первого порядка.

Остальные сердечные отделы при определенных условиях тоже генерируют нервные импульсы при включении дополнительного раздражителя, а также выключения узла первого порядка. При этом наблюдается генерация импульсов в узле второго порядка (частота около 60 раз/мин).

При раздражении в узле клетки пучка Гиса возбуждаются, частота снижается до 30 (водители ритма третьего порядка).

Потенциал действия всех водителей ритма прямо пропорционален высокой мембранной проницаемости для кальциевых и натриевых ионов, а также снижению проницаемости ионов калия.

Градиент автоматии

Автоматия сердца в обычных условиях всех участков системы подавляется синоартериальным узлом, «навязывающим» свой ритм.

По этой причине все составляющие системы со своим собственным ритмом перестраиваются на работу в едином темпе.

Градиент автоматии сердца – явление, при котором снижается способность к автоматии по мере удаления от места генерализации импульсов, то есть узла первого порядка.

До сих пор неизвестно, что вызывает резкое изменение клеточного заряда, возникающее спонтанно. Автоматия сердца может быть связана с содержанием в водителях ритма ацетилхолина. Многие ученые считают, что явление обусловлено особенностями обменных процессов в этих клетках-водителях, которые и способны изменить состояние поверхностных мембран.

Источник: https://FB.ru/article/232893/avtomatiya-serdtsa-cheloveka-opredelenie-opisanie-uzlyi-i-gradient

Сердце

Главный узел автоматии сердца расположен в

Автор статьи Зыбина А.М.

Сердце – это насос, обеспечивающий ток крови по кровеносным сосудам посредством повторных ритмичных сокращений. Сердце состоит из трех слоев (рис. 1).

Внутренний – эндокард гомологичен эндотелию сосудов, средний – миокард состоит из кардиомиоцитов и несет сократительную функцию, наружний – эпикард состоит из соединительной ткани. Миокард человека имеет большую толщину, поэтому его питание обеспечивают коронарные артерии.

Сердце окружено околосердечной сумкой – перикардом. Пространство между эпикардом и перикардом заполнено жидкостью, снижающей трение сердца о соседние ткани.

Рис. 1. Строение сердечной стенки.

Рис. 2. Внутреннее строение сердца.

Сердце состоит из предсердий (правое и левое), двух желудочков (правый и левый) (рис. 2). Правая и левая половины сердца не сообщаются и заполнены разными видами крови: правая – венозной (обедненной кислородом), левая – артериальной (обогащенной кислородом).

Кровь всегда поступает в предсердия сердца по венам, переходит в желудочки и далее в артерии. Обратному току крови препятствуют клапаны сердца. Между предсердиями и желудочками располагаются створчатые клапаны: справа трехстворчатый (трикуспидальный), слева – двустворчатый (митральный).

Между желудочками и артериями находятся полулунные клапаны: справа легочный, слева – аортальный (рис. 2, 3).

Рис. 3. Клапаны сердца.

Процесс сокращения называется систолой, расслабления – диастолой. Систола обоих предсердий происходит одновременно, как и систола обоих желудочков. Сердечный цикл в состоянии покоя составляет примерно 0,8 с.

Из них – 0,4 с сердце полностью находится в диастоле, 0,1 с приходится на систолу предсердий и 0,3 с – на систолу желудочков. Во время общей диастолы и систолы предсердий открыты створчатые и закрыты полулунные клапаны.

Во время диастолы желудочка закрываются створчатые клапаны, а когда давление в сердце начинает превышать давление в аорте, открываются полулунные клапаны.

Сердце сокращается автономно от нервной системы так как обладает миогенной автоматией. Это значит, что существуют узлы автоматии (ритмоводители), которые запускают сокращение сердца. Узлы автоматии расположены в определенных местах и подчиняются строгой иерархии (рис. 4).

Главный узел автоматии, или узел автоматии первого порядка, располагается в месте впадения венозного синуса в правое предсердие и называется синусно-предсердный (сино-атриальный, SA-узел). В норме из этого узла возбуждение распространяется по всему сердцу и сердце сокращается в его ритме (60-80 уд/мин в состоянии покоя).

Узел автоматии второго порядка расположен на границе предсердий и желудочков, и называется предсердно-желудочковый (атрио-вентрикулярный, AV-узел). Его ритм ниже (около 40 уд/мин) и при нормальной работе сердца не проявляется.

Чтобы возбуждение распространялось быстро и сокращение КМЦ желудочка происходило синхронно, существуют специальные проводящие волокна: пучок Гиса, ножки Гиса и волокна Пуркинье. Эти клетки также могут генерировать спонтанные ПД с низкой частотой (около 20 уд/мин), поэтому такие волокна называют узлом автоматии третьего порядка. В норме этот ритм также не проявляется.

Рис. 4. Расположение узлов автоматии в сердце.

Несмортя на то, что сердце способно сокращаться автономно, нервная система корректирует частоту сердечных сокращений (ЧСС). Сино-атриальный узел получает влияние от вегетативной нервной системы. При действии парасимпатической нервной системы ЧСС снижается.

Нейромедиатором в таком случае выступает ацетилхолин, а центры регуляции расположены в продолговатом мозге. Активация симпатической нервной системы приводит к увеличению ЧСС. Нейромедиатором служит норадреналин, а центры располагаются в верхних грудных сегментах спинного мозга.

Регуляция со стороны нервной системы обеспечивает подстройку ритма сердца к нагрузке организма.

Рис. 5. Круги кровообращения.

Сердце человека обеспечивает непрерывную циркуляцию крови по двум кругам кровообращения: большому и малому. Большой круг кровообращения снабжает кислородом все ткани организма. Для эффективного транспорта крови в головной мозг и другие ткани, в левом желудочке и артериях большого круга развивается высокое давление.

Большой круг кровообращения начинается в левом желудочке, откуда артериальная кровь поступает в левую дугу аорты и далее распределяется по артериям, артериолам и капиллярам. Капилляры – это обменные состуды, которые состоят из одного слоя клеток. Через них происходит диффузия газов, питательных веществ и метаболитов из крови и в кровь.

Из капилляров венозная кровь собирается в венулы и вены. Вены, идущие от кишечника распадаются на капиллярную сеть в печени (воротная система печени), где происходит обезвреживание вредных веществ, которые могли поступить с пищей. Вены от нижних конечностей и органов брюшной полости собираются в нижнюю полую вену, от верхних конечностей и головы – в верхнюю полую вену.

С задней стороны сердца полые вены сливаются в венозный синус, который впадает в правое предсердие, из которого кровь уходит на малый круг.

Малый круг кровообращения служит для обогащения венозной крови кислородом. Поскольку сердце и легкие располагаются примерно на одном уровне, в малом круге давление невысокое. По его артериям движется венозная кровь, а по венам – артериальная.

Малый круг начинается с правого желудочка, сокращени которого приводит к выбросу крови а легочные артерии. Далее, кровь поступает в капилляры легких, где обогащается кислородом.

Артериальная кровь собирается в вены, которые впадают в левое предсердие.

Рис. 6. Сердце при различных вариантах медицинского обследования. а) УЗИ, б) МРТ.

ЭКГ

Электрокардиография (ЭКГ) — это метод графической регистрации разности потенциалов электрического поля сердца, возникающего при его деятельности.

Регистрация производится при помощи аппарата — электрокардиографа. Проще говоря, электрические импульсы распространяются по сердцу всегда в определенной последовательности.

ЭКГ позволяет зарегистрировать распространение электрической активности сердца во времени.

Впервые запись электрокардиограммы произвел Огюст Дезире Уоллер (рис. 7). Он разрабатывал теорию электрических полей сердца, которую в последствии развил голландский физиолог Виллем Эйнтховен. Он же первым в 1906 г. использовал этот метод для диагностики.

Эйнтховен развил не только теорию ЭКГ, но и методы стандартизации записи. За свои заслуги он удостоился Нобелевской премии по физиологии и медицине в 1924 году.

Три стандартных отведения по Эйнтховену и в настоящее время является одним из основных способов исследования ЭКГ.

Рис. 7. Огюст Дезире Уоллер и первая запись ЭКГ.

Рис. 8. Стандартные отведения по Эйнтховену.

Чтобы измерять электрическую активность сердца, его необходимо поместить в систему координат. В качестве такой системы Эйнтховен принял треугольник, вершинами которого служат наложенные на руки и ногу электроды.

Сторона треугольника, направленная от правой руки к левой называется первым отведением, от правой руки к левой ноге – вторым отведением, а от левой руки к левой ноге – третьим отведением. Распространение возбуждения является векторной величиной, на записи ЭКГ отражается проекция электрической активности сердца на каждое отведение.

Если вектор совпадает с направлением отведения, то отклонение будет положительным, если они потивоположны – отрицательным (рис. 9).

ЭКГ, в случае стандартного наложения электродов, состоит из ряда периодически повторяющихся элементов. Положительные и отрицательные отклонения от изоэлектрической лини принято называть зубцами. Выделяют пять зубцов: P, Q, R, S, T.

Рис. 9. Проекция вектора распространения возбуждения в сердце на три стандартных отведения. Источник https://med.wikireading.ru/35207

Рис. 10. Расшифровка ЭКГ и ее соответствие фазам сердечного цикла.  Источник http://1poserdcu.ru/diagnostika/rasshifroa-ekg-u-detej.html

Зубец P является самым низкоамплитудным элементом ЭКГ и отражает распространение возбуждения по предсердиям. Когда предсердия охвачены возбуждением, на ЭКГ можно увидеть изоэлектрическую линию.

При распространении возбуждения по желудочкам вектор несколько раз меняет направление. Этот процесс отражает QRS комплекс. Одновременно с этим происходит реполяризация предсердий.

Реполяризацию желудочков отражает Т-зубец.

При различных патологиях сердца проводимость его частей для электричества изменяется, что приводит к нарушению структуры ЭКГ. Самым ярким примером нарушения может служить инфаркт миокарда. При инфаркте поражается группа КМЦ. Эти клетки больше не способны к проведению электричества.

Из них выделяются метаболиты и нарушают состав межклеточного вещества и деятельность соседних клеток. Те, в свою очередь, закрывают щелевые контакты и перестают проводить электричество. В течение нескольких месяцев или лет, часть из этих клеток может восстановиться и вновь начать проводить ПД, другая часть – погибнуть.

Поскольку самая толстая стенка и самая большая нагрузка в левом желудочке, в нем вероятность инфаркта максимальна. Следовательно, на ЭКГ будет изменяться QRS комплекс и T-зубец. Причем, из-за постоянного изменения количества проводящих клеток, форма ЭКГ будет меняться (рис. 11).

Обычно к признакам инфаркта относят слияние QRS-комплекса и T-зубца наподобие «кошачьей спинки», сильное увеличение или инверсию Т-зубца.

Рис. 11. Изменение формы ЭКГ при инфаркте миокарда. Источник http://studopedia.info/9-34971.html

Рис. 12. Экг после инфаркта в трех стандартных отведениях. Источник http://zabserdce.ru/infarcire/infarkt-na-ekg.html

Источник: https://biocpm.ru/serdce

Автоматия сердца — Знаешь как

Главный узел автоматии сердца расположен в

Если перерезать все нервы и кровеносные сосуды, идущие к сердцу животного, а затем удалить его из организма, то некоторое время такое изолированное сердце будет продолжать ритмично сокращаться.

Для того чтобы некоторое время сокращалось изолированное сердце лягушки, достаточно поместить его в изотонический раствор (0,6-процентный раствор поваренной соли).

Изолированное сердце теплокровного животного также может ритмически сокращаться, если через его кровеносные сосуды пропускать подогретый до температуры тела раствор Рингера, содержащий глюкозу и насыщенный кислородом.

Опыт оживления изолированного сердца человека впервые в мире был успешно проведен русским ученым А. А. Кулябко в 1902 г. Он оживил сердце ребенка спустя 20 ч после смерти, наступившей от воспаления легких.

Рис. 60. Схематическое изображение проводящей системы сердца:

1 — синусный узел; — предсердно-желудочковый узел; — пучок Гиса; 4и5 — его правая и левая ножки; — концевые разветвления ножек пучка Гиса.

Способность сердца ритмически сокращаться независимо от внешних воздействий, а лишь благодаря импульсам, возникающим в самом сердце, получила название автоматии. Автоматия сердца связана с особенностями сердечной мышцы. В сердце имеются мышечные волокна двух типов.

Основная масса сердечной мышцы представлена типичными для сердца волокнами, которые обеспечивают сокращения отделов сердца. Их основная функция— сократимость. Это типическая, рабочая мускулатура сердца. Кроме того, в сердечной мышце имеются атипические волокна.

С деятельностью атипических волокон связано возникновение возбуждения в сердце и проведение его от предсердий к желудочкам. Волокна атипической мускулатуры отличаются от сократительных волокон сердца как по строению, так и по физиологическим свойствам.

В них слабее выражена поперечная исчерченность, зато они обладают способностью легко возбуждаться и большей устойчивостью к вредящим влияниям. За способность волокон атипической мускулатуры проводить возникшее возбуждение по сердцу ее называют еще проводящей системой сердца.

Рис. 61. Схема строения сердца лягушки:

а — вид с брюшной стороны; б — вид сбоку; в — вид со свднш; 1 — левая дуга аорты; 2 — правая дуга аорты; — левое предсердие; 4— правое предсердие; 5 — луковица аорты; — желудочек; 7 — правая передняя полая вена; 8 — левая передняя полая вена; 9 — венозный синус; 10— задняя полая вена; 11 — узел Ремака; 12 — узел Биддера.

Атипическая мускулатура занимает по объему очень небольшую часть сердца. Скопление клеток атипической мускулатуры называют узлами (рис. 60), Один из таких узлов расположен в правом предсердии вблизи места впадения (синуса) верхней полой вены. Это так называемый синусно-предсердный узел.

 Здесь в сердце здорового человека возникают импульсы возбуждения, определяющие ритм сокращений сердца. Второй узел расположен на границе между предсердием и желудочками в перегородке сердца — предсердно-желудочковый узел. В этой области сердцавозбуждение распространяется с предсердий на желудочки сердца.

В верхней части узла возбуждение распространяется более медленно, чем по остальным отделам проводящей системы сердца. Это очень важно: сократившиеся предсердия должны успеть перекачать кровь в желудочки сердца до того, как последние начнут сокращаться.

Из предсердно-желудочкового узла возбуждение направляется по предсердно-желудочковому пучку волокон проводящей системы, который расположен в перегородке между желудочками. Ствол предсердно-желудочкового пучка разделяется на две ножки, одна из них направляется в правый желудочек, а другая — в левый.

Процесс возбуждения в сердце первоначально возникает в синусном узле, затем распространяется на другие части проводящей системы, и, наконец, возбуждение с атипической мускулатуры передается на сократительную мускулатуру сердца. Возбудившись, типическая (сократительная) мускулатура сердца сокращается, развивая напряжение для нагнетания крови в аорту и легочную артерию.

Следует отметить, что волокна типической (сократительной) мускулатуры сердца проводят возбуждение значительно медленнее, чем волокна атипической мускулатуры.

Скорость распространения волны возбуждения в предсердно-желудочковом узле всего 5 см/с, а в проводящей системе желудочков 3—4 м/с.

Замедление проведения возбуждения в предсердно-желудочковом узле обеспечивает паузу между сокращениями предсердий и желудочков.

Доказательством того, что в синусно-предсердном узле первоначально возникают импульсы возбуждения, является тот факт, что нагревание сердца в области синусного узла ведет к учащению сокращений сердца, а охлаждение узла — к замедлению сердечного ритма.

Познакомимся со степенью автоматизации различных отделов сердца лягушки.

Обездвижьте лягушку, укрепите на дощечке брюшком кверху и, сняв околосердечную сумку, обнажите сердце.

Уздечку сердца с помощью пинцета перевяжите ниткой как можно ближе к сердцу. Концы ниток не отрезайте. За них теперь можно приподнять сердце и рассмотреть его внешнее строение (рис. 61).

Сердце лягушки состоит из двух предсердий, одного желудочка и дополнительной полости, примыкающей к правому предсердию, носящей название венозного синуса.

Проводящая система сердца лягушки представлена узлом Ремака (он расположен в стенке венозного синуса на границе с предсердиями); узел Биддера располагается в межпредсердной перегородке на границе с желудочком.

От узла Биддера в стенку желудочка проходят волокна проводящей системы.

Смочите сердце с помощью пипетки раствором Рингера (можно взять 0,65-процентный раствор NaCl) и подсчитайте число сокращений за 1 мин венозного синуса, предсердий и желудочка. Теперь подведите нитку под венозный синус.

Венозный синус хорошо виден, если за нитку, которой перевязана уздечка сердца, отвернуть кверху желудочек сердца. Теперь виден пульсирующий отдел сердца темно-синего цвета. Затяните нитку на границе между венозным синусом и предсердиями (первая перевязка Станниуса, рис. 62).

Граница между венозным синусом и предсердиями наблюдается в виде светлой полоски на фоне темного венозного синуса. Подсчитайте теперь ритм сокращений венозного синуса, предсердий и желудочка.

После перевязки сокращения венозного синуса продолжаются обычно в прежнем ритме, а предсердия и желудочек или останавливаются, или начинают сокращаться в более редком ритме.

Рис. 62. Схема наложения перевязок Станниуса:

1 — первая перевязка; — первая и вторая перевязки; — первая, вторая и третья перевязки.

 Если предсердия и желудочек после наложения первой перевязки прекратили сокращения, то сердце слегка массируют пинцетом, смачивая раствором Рингера. Через некоторое время (от 1 до 30 мин) предсердия и желудочек возобновляют сокращения, но в более редком ритме. Объясните почему.

Почему прекращаются сокращения предсердий и желудочка после первой перевязки. Если предсердия и желудочек после первой перевязки не восстанавливают самостоятельно сокращений, затяните нитку на границе между предсердиями и желудочком. (Это вторая перевязка Станниуса.

) При затягивании нитка будет раздражать узел Биддера и вызовет его автоматическую деятельность. Может случиться так, что после второй перевязки будет сокращаться только желудочек или только предсердие.

Это будет зависеть от того, как легла нитка по отношению к узлу Биддера (ниже узла или выше его.

Если после первой перевязки предсердия и желудочек продолжают сокращаться, хотя и более замедленно, вторую перевязку наложите выше границы между предсердиями и желудочком и также подсчитайте количество сокращений отделов сердца в минуту. Не забудьте во время опыта периодически смачивать сердце раствором Рингера.

Наложите третью перевязку (рис. 62, 3). Объясните результаты опыта.

Возбуждение распространяется сначала по атипической мускулатуре, а затеем передается на волокна сократительной мускулатуры сердца сравнительно быстро.

Однако проходит некоторое время, пока возбуждение из предсердий достигнет мышечных волокон желудочков. Именно поэтому не происходит одновременного сокращения всех отделов сердца, а систола предсердий предшествует систоле желудочков.

Кровь успевает перекачиваться из предсердий в желудочки, а из желудочков в артерии.

Статья на тему Автоматия сердца

Источник: https://znaesh-kak.com/m/a/%D0%B0%D0%B2%D1%82%D0%BE%D0%BC%D0%B0%D1%82%D0%B8%D1%8F-%D1%81%D0%B5%D1%80%D0%B4%D1%86%D0%B0

Автоматия сердца

Главный узел автоматии сердца расположен в

СЕРДЦЕ (cor), центральный орган кровеносной системы животных и человека, нагнетающий кровь в артериальную систему и обеспечивающий ее возврат по венам. Сердце некоторых пресмыкающихся (крокодилы), птиц, млекопитающих и человека — полый мышечный орган, разделенный на 4 камеры: правое и левое предсердия, правый и левый желудочки.

Сердце расположено асимметрично в среднем средостении. Большая часть его находится влево от срединной линии, справа расположены правое предсердие и обе полые вены. Форма сердца напоминает несколько уплощенный конус. При выдохе, когда диафрагма поднимается, сердце расположено более поперечно, при вдохе более вертикально.

Размеры сердца здорового человека коррелируют с величиной тела, а также зависят от интенсивности обмена веществ. Средняя масса сердца у женщин 250 г, у мужчин — 300 г.

Сердце представляет собой полый мышечный орган, разделенный внутри на четыре полости: правое и левое предсердия и правый и левый желудочки. Снаружи предсердия отделены от желудочков венечной бороздой, желудочки отделены один от другого передней и задней межжелудочковыми бороздами. Передневерхняя выступающая часть каждого предсердия называется ушком предсердия.

Сердце человека имеет три поверхности: грудино-реберную — переднюю, диафрагмальную — нижнюю и легочную — боковую. Относительно широкое основание сердца образовано предсердиями, восходящей частью аорты и легочным стволом.

Оно обращено вверх, назад и направо. Самый нижний и более всего выступающий влево конусовидно суживающийся конец сердца — его верхушка — сформирован левым желудочком.

В венечной и межжелудочковых бороздах лежат сосуды, питающие сердце.

Правое предсердие имеет кубическую форму, в него впадают верхняя и нижняя полые вены и венечный синус сердца. Кпереди и вправо полость предсердия продолжается в правое ушко.

Внутренняя поверхность стенки правого предсердия гладкая, на ней имеются 2 складки: одна у места впадения нижней полой вены (заслонка этой вены), другая у места впадения венечного синуса — его заслонка.

На внутренней поверхности правого ушка и прилежащей к нему части передней стенки находятся несколько валиков, соответствующих гребенчатым мышцам.

Сердечный цикл. автоматия сердца

На межпредсердной перегородке расположена овальная ямка: во внутриутробном периоде здесь находилось овальное отверстие, через которые сообщались предсердия.

В левое предсердие открываются 4 легочные вены, по две с каждой стороны, кпереди и влево располагается левое ушко. Оба ушка охватывают спереди начало аорты и легочного ствола.

В правый желудочек кровь поступает из правого предсердия через правое предсердно-желудочковое отверстие, по краю которого расположен предсердно-желудочковый (трехстворчатый) клапан.

Он состоит из передней, задней и перегородочной створок, образованный складками эндокарда, которые содержат плотную волокнистую соединительную ткань и покрыты эндотелием. В месте прикрепления створок клапана соединительная ткань переходит в фиброзное кольцо, окружающее правое предсердно-желудочковое отверстие.

От створок клапана начинаются сухожильные хорды, прикрепленные противоположными концами к передней, задней и перегородочной сосочковым мышцам, расположенным на внутренней поверхности правого желудочка.

Эти мышцы вместе с сухожильными хордами удерживают клапаны и при сокращении (систоле) желудочка препятствуют обратному току крови в предсердие.

В полости желудочка выделяют передневерхний отдел — артериальный конус, который продолжается в легочный ствол. В области артериального конуса стенка правого желудочка гладкая, на остальном продолжении внутрь вдаются мышечные перекладины — мясистые трабекулы, расположенные продольно и поперечно.

При сокращении желудочка кровь выталкивается в легочный ствол через отверстие легочного ствола, в области которого находится одноименный клапан. Клапан состоит из трех полулунных заслонок (левой, правой и передней), свободно пропускающих кровь из желудочка в легочеый ствол.

Соприкасаясь своими краями, заслонки, подобно наполненным карманам, закрывают отверстие и препятствуют обратному току крови.

Левый желудочек имеет форму конуса, стенки его в 2-3 раза толще стенок правого желудочка. Это связано с его большей работой.

Из полости левого предсердия в левый желудочек ведет левое предсердно-желудочковое отверстие овальной формы, снабженное левым предсердно-желудочковым двухстворчатым клапаном (митральным).

Из желудочка кровь направляется в отверстие аорты, снабженное клапаном, состоящим из трех полулунных заслонок (задней, правой и левой), имеющих такое же строение, как и клапан легочного ствола.

На внутренней поверхности левого желудочка имеются покрытые эндокардом мышечные тяжи — мясистые трабекулы, а также передняя и задняя сосочковые мышцы. От них отходят тонкие сухожильные хорды, прикрепляющиеся к створкам левого предсердно-желудочкового клапана.

Межжелудочковая перегородка состоит из большей мышечной части и меньшей перепончатой (верхний ее участок), где имеется лишь фиброзная ткань, покрытая с обеих сторон эндокардом.

Стенка сердца состоит из 3 слоев: наружного, или эпикарда, среднего — миокарда и внутреннего — эндокарда.

Эпикард — это висцеральная пластинка серозного перикарда — тонкая соединительнотканная пластинка, покрытая мезотелием. Висцеральная пластинка серозного перикарда окутывает сердце, начальные отделы легочного ствола и аорты, конечные отделы легочных и полых вен, а затем переходит в париетальную пластинку серозного перикарда.

Большая часть сердечной стенки — миокард, мышечный слой, образованный сердечной поперечнополосатой мышечной тканью. Миокард предсердий и желудочков разобщен, что создает возможность отдельного их сокращения. Мышцы предсердий и желудочков сердца начинаются от двух фиброзных колец, окружающих правое и левое предсердно-желудочковые отверстия.

У предсердий различают два слоя мышц: поверхностный состоит из расположенных по кругу пучков кардиомиоцитов, глубокий — из продольных. Поверхностный слой мышц покрывает оба предсердия, глубокий — отдельно каждое предсердие. Вокруг устий полых легочных вен, впадающих в предсердия, имеются расположенные по кругу пучки миоцитов.

В мускулатуре желудочков имеются три слоя: тонкий поверхностный — продольный, его мышечные пучки начинаются от фиброзных колец и идут косо вниз. На верхушке сердца они образуют завиток и переходят во внутренний продольный слой, который своим верхним краем прикрепляется к фиброзным кольцам.

Между продольными наружным и внутренним располагается средний слой. Он является самостоятельным для каждого желудочка.

Во время общего расслабления сердца (диастола) кровь из полых и легочных вен поступает в правое и левое предсердия. Затем наступает сокращение (систола 0 предсердий).

Последовательное сокращение и расслабление желудочков и предсердий связано с наличием проводящей системы сердца.

Эндокард выстилает изнутри камеры сердца, покрывает сосочковые мышцы, хорды и клапаны. Эндокард толще в левых камерах сердца, особенно на межжелудочковой перегородке и у начала аорты и легочного ствола.

На сухожильных хордах он значительно тоньше. Эндокард образован эндотелием, лежащим на толстой базальной мембране, под которым расположены соединительнотканные и мышечно-эластические слои.

На границе с миокардом лежит наружный соединительнотканный слой.

Перикард — это замкнутый мешок, в котором имеются два слоя: фиброзный перикард, переходящий в наружную оболочку крупных сосудов, а спереди прикрепляющийся к внутренней поверхности грудины, и внутренний — серозный перикард, который делится на два листка. Висцеральный листок, или эпикард, и париетальный, сращенный с внутренней поверхностью фиброзного перикарда, выстилающий его изнутри.

Между висцеральным и париетальным листками находится щелевидная серозная перикардиальная полость, содержащая небольшое количество серозной жидкости, которая смачивает обращенные друг к другу поверхности серозных листков, покрытых мезотелием.

На крупных сосудах вблизи сердца висцеральный и париетальный листки переходят один в другой.

Перикард имеет форму конуса, основание которого срастается с сухожильным центром диафрагмы, а притупленная верхушка направлена кверху и охватывает начальные отделы аорты, легочного ствола и конечные части крупных вен. С боков перикард прилежит к медиастинальной плевре.

Задняя поверхность перикарда соприкасается с пищеводом и грудной частью аорты. Начальные отделы аорты и легочного ствола окружены со всех сторон перикардом, полые и легочные вены покрыты серозным листком лишь частично.

Большая часть передней поверхности сердца прикрыта легкими, передние края которых вместе с частями правой и левой медиастинальной плевры, заходя впереди сердца, отделяют его от передней грудной стенки.

АВТОМАТИЯ СЕРДЦА – способность клеток сердца к самовозбуждению, без каких- либо воздействий извне.

Изолированное сердце при снабжении его питательным раствором способно сокращаться вне организма продолжительное время. У плода человека первые сокращения сердца возникают на 19-й или 20-й день внутриутробного развития, когда парные закладки сердца сливаются в одну сердечную трубку, все клетки которой способны к самовозбуждению.

По мере формирования эмбрионального сердца в его ткани происходит разделение на сократительный миокард и проводящую систему сердца.

Способность генерировать автоматический ритм закрепляется за узловой тканью проводящей системы, образующей узлы автоматии — синусно-предсердный (так называемый водитель ритма сердца, или пейсмекер) и предсердно-желудочковый.

Потенциально все элементы проводящей системы в разной степени способны к генерации автоматического ритма. Существует так называемый градиент автоматии. Наиболее высокой способностью к автоматии обладает синусно-предсердный узел, где генерируется ритм, который усваивается остальными элементами проводящей системы и сократительным миокардом.

У человека он равен 60-70 уд/мин в состоянии покоя. Если работа синусно-предсердного узла нарушена, функция водителя ритма переходит к предсердно-желудочковому узлу, который генерирует более медленный сердечный ритм (около 40 уд/мин), но он в состоянии обеспечить нормальную работу сердца и нормальное кровоснабжение организма.

Другие элементы проводящей системы, и в первую очередь пучок Гиса, также способны к автоматии, но генерируемое здесь возбуждение возникает с еще более низкой частотой и проявляется только в условиях патологии, например при гипоксии, и ишемии.

В этих условиях ненормальные очаги автоматии могут формироваться и в сократительных клетках сердца, создавая источники аритмии сердца.

Способность клетки генерировать автоматический ритм в значительной мере определяется величиной мембранного потенциала, при котором активируются ионные каналы, обеспечивающие самовозбуждение клетки (см. Потенциалы действия сердца).

Для клеток узловой ткани характерен более низкий уровень мембранного потенциала, чем для сократительных клеток сердца.

Гипоксия и ишемия вызывают снижение мембранного потенциала в сократительных клетках сердца и делают возможным возникновение в них автоматии.

Узловая ткань позвоночных имеет мышечное происхождение — в этом случае принято говорить о миогенной автоматии. У части беспозвоночных животных, а именно у ракообразных, возбуждение возникает в нервных ганглиях, расположенных на поверхности сердца, откуда оно передается сократительным клеткам.

В этом случае говорят о нейрогенном ритме (автоматии). Нейрогенная автоматия сердца, вероятно, явление вторичное, т. к.

личинки животных, обладающих нейрогенной автоматией, имеют миогенный сердечный ритм, а после экспериментального удаления нервных ганглиев в сердце на миогенный ритм переходят и взрослые ракообразные.

Точно определить местонахождение водителя ритма в сердце и характер его автоматии позволяет регистрация потенциалов действия сердца.

Потенциалы действия всех автоматических структур, и миогенных и нейрогенных, имеют предымпульсную деполяризацию, выводящую мембранный потенциал этих клеток на уровень возникновения распространяющегося электрического импульса.

Потенциалы действия нейрогенных сердец имеют свою особенность: на плато потенциала действия сократительной клетки сердца у них накладывается разряд автоматических клеток нервного ганглия, придавая ему своеобразное очертание.

При разобщении клеток узловой ткани друг от друга каждая из них возбуждается с собственной частотой, отличной от частоты интактного водителя ритма. Единый ритм работы всех клеток, составляющих водитель ритма, формируется в результате синхронизации, происходящей на основе электрического и механического взаимодействия этих клеток.

Источник: https://laservirta.ru/%D0%B0%D0%B2%D1%82%D0%BE%D0%BC%D0%B0%D1%82%D0%B8%D1%8F-%D1%81%D0%B5%D1%80%D0%B4%D1%86%D0%B0/

МедЗабота
Добавить комментарий