Этапы обмена железа в организме, Потери железа, Регуляция метаболизма железа

Физиология обмена железа и его эффекты

Этапы обмена железа в организме, Потери железа, Регуляция метаболизма железа

Назначение железа как доношенным, так и недоношенным детям является одним из наиболее противоречивых вопросов. Дефицит железа широко распространен, он оказывает долгосрочное влияние на развитие нервной системы и поведенческие функции, нарушение которых может быть необратимым процессом. В то же время известно, что избыток железа токсичен.

Граница между терапевтической и токсической дозами железа весьма условна.

Вопросы, которые вызывают противоречивые мнения, касаются адекватных лабораторных методов для оценки содержания железа в организме; времени начала дополнительного введения железа и безопасности такого вмешательства у недоношенных детей с учетом возможного побочного действия избыточного количества железа; времени начала дополнительного введения железа детям, находящимся исключительно на грудном вскармливании.

Железо — важнейший нутриент, участвующий в биологических процессах, включающих репликацию ДНК, экспрессию генов, клеточное дыхание (в т.ч. образование АТФ), а также в транспорте и усвоении кислорода.

Железо нужно для эритропоэза (образования гемоглобина).

Кроме того, оно является неотъемлемым компонентом многих ферментов, необходимых для развития головного мозга и чрезвычайно важных для работы мышц сердца и скелетных мышц (в частности, миоглобина).

Подобно кальцию и многим другим минералам, 80% железа, имеющегося в организме доношенного ребенка, накапливается плодом на сроке гестации между 24 и 40 нед со скоростью 1,6—2 мг/кг/сут. Общее содержание железа к моменту рождения составляет 75 мг/кг независимо от размеров ребенка; 75% железа находится в эритроцитах, 15% — в печени.

Железо может усваиваться организмом как в органической, так и в неорганической форме.

Органическая форма в виде ферритина или гемопротеинов отличается высокой биодоступностью и содержится в печени и «красных» мышцах.

Для новорожденных детей, диета которых не содержит мяса, эти продукты не могут служить источником железа. Неорганическую форму железа (или двухвалентное железо) часто используют в виде добавки к пище.

Она может быть подвержена хелированию и преципитации при взаимодействии с другими компонентами пищи, что снижает ее биодоступность. В частности, так действуют фитаты, фосфаты, таннаты, оксалаты и карбонаты.

Как показали исследования с применением стабильных изотопов железа, количество неорганического железа, которое всасывается у недоношенных детей, составляет 34—42%.

Это превышает количество железа (7-12%), поступающего в организм доношенного ребенка.

Схема обмена железа в организме взрослого человека

К факторам, усиливающим абсорбцию у недоношенных детей, относят постнатальный возраст, дефицит железа, введение железа (в т.ч. в составе сертифицированных смесей) между приемами пищи, нормальное содержание витамина С в организме.

К факторам, уменьшающим абсорбцию железа, относят искусственное вскармливание (такие дети чаще имеют дефицит железа по сравнению с получающими грудное молоко) и гемотрансфузии.

Гестационный возраст, постконцептуальный возраст и терапия эритропоэтином оказывают минимальный эффект на усвоение организмом железа.

Всасывание железа у взрослых происходит на апикальной поверхности энтероцитов двенадцатиперстной кишки. Органическое (или гемовое) железо транспортируется в энтероцит через недавно открытый белок-переносчик гема 1.

Дальнейший путь железа после проникновения его в энтероцит до конца не изучен, хотя известно, что фермент гемоксигеназа, который высвобождает железо из протопорфиринового кольца, находится в микросомальной части энтероцита.

Гораздо больше известно о всасывании негемового железа. Один из путей заключается в превращении трехвалентного железа в двухвалентное на щеточной кайме энтероцитов при участии фермента дуоденальной редуктазы трехвалентного железа. Затем транспортер бивалентных металлов 1 переносит редуцированную форму железа через апикальную мембрану.

Когда железо попадает в энтероцит, оно может накапливаться в виде ферритина для дальнейшего использования или утрачивается при «слущивании» стареющего энтероцита.

Внутриклеточное негемовое железо может быть транспортировано в кровь через базолатеральную мембрану с помощью транспортера негемового железа ферропор-тина, который является важнейшим экспортером внутриклеточного железа.

Ферропортин расположен на базолатеральной поверхности энтероцитов, гепатоцитов и макрофагов.

После попадания в кровь железо соединяется с трансферрином и переносится к месту использования или накопления. Предшественники эритроцитов имеют большое количество рецепторов трансферрина 1 (TfR1), что позволяет им иметь преимущества в захвате циркулирующего железа.

Стареющие эритроциты поглощаются макрофагами. Макрофаги экспортируют восстановленное железо с помощью ферропортина (того же переносчика, который содержится в дуоденальных энтероцитах). Железо накапливается в печени, которая захватывает его из портальной системы с помощью TfR1.

Суточная потребность организма в железе

Организм человека обладает способностью распределять доступное железо между органами, исходя из приоритетной потребности в нем.

При дефиците железа в первую очередь расходуются его запасы в печени, затем — в скелетных мышцах и кишечнике.

При выраженном дефиците железа сначала истощаются его запасы в сердечной мышце, затем — в головном мозге и, наконец, в эритроцитах. Железодефицитная анемия является тяжелой формой дефицита железа.

Эритроциты имеют большую потребность в железе даже по сравнению с головным мозгом, несмотря на возможные отрицательные неврологические последствия для ребенка, обусловленные дефицитом железа в мозговой ткани.

Железо играет важную роль в процессах пролиферации нейронов, миелинизации, метаболизма энергии, нейротрансмиссии и работе различных ферментов в ЦНС. Существует система приоритетов по распределению и расходованию железа в пределах одного органа, что было показано в экспериментах на головном мозге новорожденных детенышей крысы.

Наиболее чувствительными к дефициту железа в перинатальном периоде оказались гиппокамп и зона коры головного мозга.

Эритроциты являются приоритетным местом использования железа в организме, очевидна их исключительная функция в транспортировке кислорода в организме.

Кислород обратимо присоединяется к гемоглобину в условиях высокого парциального давления кислорода в легких и высвобождается из этой связи при относительно низком парциальном давлении кислорода в тканях.

На аффинность кислорода влияет ряд факторов, в т.ч. концентрация 2,3-дифосфоглицерата и рН.

Для осуществления обратимой связи кислорода с гемоглобином железо гемовой части должно находиться в двухвалентной форме.

В эритроцитах существует специальный механизм для поддержания железа в редуцированной двухвалентной форме, однако в условиях действия лекарств, обладающих окислительной активностью, или токсинов, а также при генетических нарушениях в эритроцитах или аномалиях самого гемоглобина данные защитные механизмы не работают и гемоглобин не выполняет свою функцию.

Высвобождение кислорода в мышцах частично зависит от концентрации миоглобина в тканях. Так же, как и в случае с гемоглобином, дефицит железа тормозит синтез миоглобина.
Низкое содержание миоглобина в мышцах, подобно низкой концентрации гемоглобина в крови, ухудшает высвобождение кислорода.

– Также рекомендуем “Потребность в железе у новорожденных детей”

Оглавление темы “Потребности новорожденных в нутриентах”:

Источник: https://meduniver.com/Medical/Physiology/obmen_geleza.html

Обмен железа в организме

Этапы обмена железа в организме, Потери железа, Регуляция метаболизма железа

Глава 16

АНЕМИЯ И БЕРЕМЕННОСТЬ

Анемия — это состояние организма человека, характеризующееся снижением уровня гемоглобина, уменьшением количества эритроцитов, появлением их патологических форм, изменением витаминного баланса, количества микроэлементов и ферментов.

Анемия — не диагноз, а симптом, поэтому в обязательном порядке необходимо выяснять причину ее развития.

Критериями анемии у женщин, согласно данным ВОЗ, являются: концентрация гемоглобина — менее 120 г/л, а во время беременности — менее 110 г/л.

Анемия — одно из наиболее частых осложнений беременности. По данным ВОЗ, частота железодефицитной анемии у беременных в странах с различными уровнями жизни колеблется от 21 до 80 %.

За последнее десятилетие в связи с ухудшением социально-экономической обстановки в России частота железодефицитной анемии значительно возросла, несмотря на низкую рождаемость.

Частота анемии, по данным Минздрава РФ, за последние 10 лет увеличилась в 6,3 раза.

Анемия беременных в 90 % случаев является железодефицитной. Железодефицитная анемия — это клинико-гематологический синдром, характеризующийся нарушением синтеза гемоглобина из-за развивающегося вследствие различных физиологических и патологических процессов дефицита железа и проявляющийся симптомами анемии и сидеропении.

В развитых странах Европы и на территории России около 10 % женщин детородного возраста страдают железодефицитной анемией, у 30 % из них наблюдается скрытый дефицит железа, в некоторых регионах нашей страны (Север, Восточная Сибирь, Северный Кавказ) данный показатель достигает 50—60 %.

В конце беременности практически у всех женщин имеется скрытый дефицит железа, причем у '/з из них развивается железодефицитная анемия.

Наличие железодефицитной анемии нарушает качество жизни пациенток, снижает их работоспособность, вызывает функциональные расстройства со стороны многих органов и систем. У беременных дефицит железа увеличивает риск развития осложнений в родах, а при отсутствии своевременной и адекватной терапии ведет к возникновению дефицита железа у плода.

Обмен железа в организме

Железо относится к одним из жизненно важных для организма элементов, входит в состав гемоглобина, миоглобина, участвует в функционировании множества ферментных систем организма, процессах тканевого дыхания и других физиологических процессах.

Из поступающего в организм с пищей в количестве 15—20 мг в сутки железа всасывается в двенадцатиперстной и проксимальных отделах тощей кишки не более 2—3 мг железа (предел усвоения организмом данного элемента).

Причем интенсивность этого процесса определяется потребностью в железе (при его дефиците всасывание увеличивается). Наиболее полно усваивается железо из продуктов животного происхождения (мясо), значительно хуже из пищи растительного характера.

Высвобождение железа из продуктов снижается при их тепловой обработке, замораживании и длительном хранении.

Следует отметить, что всасывание железа усиливается под влиянием:

• меди;

• желудочного сока;

• белков животного происхождения;

• аскорбиновой кислоты.

Аскорбиновая кислота образует комплексы железа, хорошо растворимые в кислой среде желудка, и продолжает поддерживать их растворимость даже в щелочной среде тонкой кишки.

Фосфаты, фитин, танин, оксалаты, а также различные патологические процессы в тонкой кишке нарушают и угнетают всасывание железа.

Поступившее в кровь железо соединяется с трансферрином (белок (3-глобулиновой фракции), который осуществляет транспортировку железа в различные ткани и органы, в частности в эритробласты костного мозга, где оно включается в молекулы эритроцитов (1,5—3 г) и представляет основной фонд железа в организме.

В результате физиологического гемолиза из распадающихся эритроцитов происходит высвобождение железа (15—25 мг/сут), которое соединяется в крови с трансферрином и вновь используется эритробластами для синтеза гемоглобина. Следует отметить, что 75 % железа человеческого организма находится в гемоглобине.

Важное физиологическое значение имеет фонд запасов железа, представленный ферритином и гемосидерином. Железо запасов содержится в макрофагах паренхиматозных органов (печень, селезенка). Общее количество железа в запасах составляет 0,5—1,5 г.

Небольшое количество железа (около 125 мг) входит в состав миоглобина, цитохромов, ферментов (каталаза, пероксидаза), некоторых белков. Наличие запасного фонда железа обеспечивает временную компенсацию в тех ситуациях, когда потери железа превышают его поступление с пищей.

Таблица 16.1. Основные гематологические показатели во время беременности

Показатели Небеременные женщины I триместр II триместр III триместр
Гемоглобин, г/л 139 (115-160) 131 (112-165) 126(110-144) 112(110-140)
Гематокритное число, %
Эритроциты (• 1012/л) 3,7 3,6 3,25 3,2
Лейкоциты (• 109/л) 5,5 6,6 7,9 9,6
Нейтрофилы, % 0,5 0,2 0,2 0,1
Базофилы, % 2,0 1,7 1,5 1,5
Эозинофилы, % 38,0 27,9 25,2 25,3
Лимфоциты, % 4,0 3,9 4,0 4,5
СОЭ, мм/ч

Таким образом, в организме человека находится около 4 г железа.

Выводится железо из организма женщины в количестве 2—3 мг в сутки через кишечник, желчь, с мочой, через слущивающийся эпителий кожи, при лактации и менструациях.

Потери железа при каждой беременности, в родах и за время лактации составляют 700—900 мг (до 1 г). Организм в состоянии восстановить запасы железа в течение 4—5 лет. Если женщина планирует беременность раньше этого срока, у нее неизбежно развивается анемия. Дефицит железа не может не возникнуть у многорожавших женщин (имеющих более 4 детей).

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/7_74900_obmen-zheleza-v-organizme.html

Обмен железа

Этапы обмена железа в организме, Потери железа, Регуляция метаболизма железа

В гемсодержащих белках железо находится в составе гема. В негемовых железосодержащих белках железо непосредственно связывается с белком. К таким белкам относят трансферрин, ферритин, окислительные ферменты рибонуклеотидредуктазу и ксантиноксидазу, железофла- вопротеины NADH-дeгидpoгeнaзa и сукцинат- дегидрогеназа.

В организме взрослого человека содержится 3 — 4 г железа, из которых только около 3,5 мг находится в плазме крови. Гемоглобин имеет примерно 68% железа всего организма, ферритин — 27%, миоглобин — 4%, трансферрин — 0,1%.

На долю всех содержащих железо ферментов приходится всего 0,6% железа, имеющегося в организме.

Источниками железа при биосинтезе железосодержащих белков служат железо пищи и железо, освобождающееся при постоянном распаде эритроцитов в клетках печени и селезёнки.

В нейтральной или щелочной среде железо находится в окисленном состоянии — Fе3+, образуя крупные, легко агрегирующие комплексы с ОН-, другими анионами и водой. При низких значениях pH железо восстанавливается и легко диссоциирует.

Процесс восстановления и окисления железа обеспечивает его перераспределение между макромолекулами в организме.

Ионы железа обладают высоким сродством ко многим соединениям и образуют с ними хелатные комплексы, изменяя свойства и функции этих соединений, поэтому транспорт и депонирование железа в организме осуществляют особые белки. В клетках железо депонирует белок ферритин, в крови его транспортирует белок трансферрин.

А. Всасывание железа в кишечнике

В пище железо в основном находится в окисленном состоянии (Fе3+) и входит в состав белков или солей органических кислот. Освобождению железа из солей органических кислот способствует кислая среда желудочного сока. Наибольшее количество железа всасывается в двенадцатиперстной кишке.

Аскорбиновая кислота, содержащаяся в пище, восстанавливает железо и улучшает его всасывание, так как в клетки слизистой оболочки кишечника поступает только Fе2+. В суточном количестве пищи обычно содержится 15— 20 мг железа, а всасывается только около 10% этого количества.

Организм взрослого человека теряет около 1 мг железа в сутки.

Количество железа, которое всасывается в клетки слизистой оболочки кишечника, как правило, превышает потребности организма. Поступление железа из энтероцитов в кровь зависит от скорости синтеза в них белка апоферритина.

Апоферритин «улавливает» железо в энтероцитах и превращается в ферритин, который остаётся в энтероцитах. Таким способом снижается поступление железа в капилляры крови из клеток кишечника. Когда потребность в железе невелика, скорость синтеза апоферритина повышается (см.

ниже «Регуляция поступления железа в клетки»). Постоянное слущивание клеток слизистой оболочки в просвет кишечника освобождает организм от излишков железа. При недостатке железа в организме апоферритин в энтероцитах почти не синтезируется.

Железо, поступающее из энтероцитов в кровь, транспортирует белок плазмы крови трансферрин (рис. 13-7).

Рис. 13-7. Поступление экзогенного железа в ткани. В полости кишечника железо освобождается из белков и солей органических кислот пищи. Усвоению железа способствует аскорбиновая кислота, восстанавливающая железо.

В клетках слизистой оболочки кишечника избыток поступившего железа соединяется с белком апоферритином с образованием ферритина, при этом ферритин окисляет Fе2+ в Fе3+. Поступление железа из клеток слизистой оболочки кишечника в кровь сопровождается окислением железа ферментом сыворотки крови ферроксидазой.

В крови Fе3+ транспортирует белок сыворотки крови трансферрин. В тканях Fе2+ используется для синтеза железосодержащих белков или депонируется в ферритине.

Б. Транспорт железа в плазме крови и его поступление в клетки

В плазме крови железо транспортирует белок трансферрин. Трансферрин — гликопротеин, который синтезируется в печени и связывает только окисленное железо (Fе3+).

Поступающее в кровь железо окисляет фермент ферроксидаза, известный как медьсодержащий белок плазмы крови церулоплазмин.

Одна молекула трансферрина может связать один или два иона Fе3+, но одновременно с анионом СO32- с образованием комплекса трансферрин-2 (Fе3+-СO32-). В норме трансферрин крови насыщен железом приблизительно на 33%.

Трансферрин взаимодействует со специфическими мембранными рецепторами клеток. В результате этого взаимодействия в цитозоле клетки образуется комплекс Са2+-кальмодулин-ПКС, который фосфорилирует рецептор трансферрина и вызывает образование эндосомы.

АТФ-зависимый протонный насос, находящийся в мембране эндосомы, создаёт кислую среду внутри эндосомы. В кислой среде эндосомы железо освобождается из трансферрина. После этого комплекс рецептор — апотрансферрин возвращается на поверхность плазматической мембраны клетки.

При нейтральном значении pH внеклеточной жидкости апотрансферрин изменяет свою конформацию, отделяется от рецептора, выходит в плазму крови и становится способным вновь связывать ионы железа и включаться в новый цикл его транспорта в клетку.

Железо в клетке используется для синтеза железосодержащих белков или депонируется в белке ферритине.

Ферритин — олигомерный белок с молекулярной массой 500 кД. Он состоит из тяжёлых (21 кД) и лёгких (19 кД) полипептидных цепей, составляющих 24 протомера. Разный набор протомеров в олигомере ферритина определяет образование нескольких изоформ этого белка в разных тканях.

Ферритин представляет собой полую сферу, внутри которой может содержаться до 4500 ионов трёхвалентного железа, но обычно содержится менее 3000. Тяжёлые цепи ферритина окисляют Fе2+ в Fе3+. Железо в виде гидроксидфосфата находится в центре сферы, оболочка которой образована белковой частью молекулы.

Оно поступает внутрь и освобождается наружу через каналы, пронизывающие белковую оболочку апоферритина, но железо может откладываться и в белковой части молекулы ферритина. Ферритин содержится почти во всех тканях, но в наибольшем количестве в печени, селезёнке и костном мозге. Незначительная часть ферритина экскретируется из тканей в плазму крови.

Поскольку поступление ферритина в кровь пропорционально его содержанию в тканях, то концентрация ферритина в крови — важный диагностический показатель запасов железа в организме при железодефицитной анемии. Метаболизм железа в организме представлен на рис. 13-8.

Рис. 13-8. Метаболизм железа в организме.

В. Регуляция поступления железа в клетки

железа в клетках определяется соотношением скоростей его поступления, использования и депонирования и контролируется двумя молекулярными механизмами.

Скорость поступления железа в неэритроидные клетки зависит от количества белков-рецепторов трансферрина в их мембране. Избыток железа в клетках депонирует ферритин.

Синтез апоферритина и рецепторов трансферрина регулируется на уровне трансляции этих белков и зависит от содержания железа в клетке.

На нетранслируемом 3'-конце мРНК рецептора трансферрина и на нетранслируемом 3'- конце мРНК апоферритина имеются шпилечные петли — железочувствительные элементы IRE (рис. 13-9 и 13-10). Причём мРНК рецептора трансферрина имеет 5 петель, а мРНК апоферритина — только 1.

Эти участки мРНК могут взаимодействовать с регуляторным IRE-связывающим белком. При низких концентрациях железа в клетке IRE-связывающий белок соединяется с IRE мРНК апоферритина и препятствует присоединению белковых факторов инициации трансляции (рис. 13-9, А).

В результате этого снижаются скорость трансляции апоферритина и его содержание в клетке. Вместе с тем при низких концентрациях железа в клетке IRE-связывающий белок связывается с железочувствительным элементом мРНК рецептора трансферрина и предотвращает её разрушение ферментом РНК-азой (рис. 13-10, А).

Это вызывает увеличение количества рецепторов трансферрина и ускорение поступления железа в клетки.

При повышении содержания железа в клетке в результате его взаимодействия с IRE-связывающим белком происходит окисление SH- групп активного центра этого белка и снижение сродства к железочувствительным элементам мРНК. Это приводит к двум последствиям:

• вопервых, ускоряется трансляция апоферритина (рис. 13-9, Б);

Рис. 13-9. Регуляция синтеза апоферритина. А — при снижении содержания железа в клетке железосвязывающий белок обладает высоким сродством к IRE и взаимодействует с ним.

Это препятствует присоединению белковых факторов инициации трансляции к мРНК, кодирующей апоферритин, и синтез апоферритина прекращается; Б — при повышении содержания железа в клетке оно взаимодействует с железосвязывающим белком, в результате чего снижается сродство этого белка к IRE.

Белковые факторы инициации трансляции присоединяются к мРНК, кодирующей апоферритин, и инициируют трансляцию апоферритина.

• во-вторых, IRE-связывающий белок освобождает шпилечные петли мРНК рецептора трансферрина, и она разрушается ферментом РНК-азой, в результате снижается скорость синтеза рецепторов трансферрина (рис. 13-10, Б). Ускорение синтеза апоферритина и торможение синтеза рецепторов трансферрина вызывают снижение содержания железа в клетке.

В целом эти механизмы регулируют содержание железа в клетках и его использование для синтеза железосодержащих белков.

Рис. 13-10. Регуляция синтеза рецептора трансферрина. А — при низком содержании железа в клетке железочувствительный белок обладает высоким сродством к IRE мРНК, кодирующей белок-рецептор трансферрина.

Присоединение железосвязывающего белка к IRE мРНК предотвращает её разрушение РНК-азой и синтез белка-рецептора трансферрина продолжается; Б — При высоком содержании железа в клетке сродство железосвязывающего белка к IRE снижается, и мРНК становится доступной для действия РНК-азы, которая её гидролизует. Разрушение мРНК ведёт к снижению синтеза белка-рецептора трансферрина.

Г. Нарушения метаболизма железа

Железодефицитная анемия может наблюдаться при повторяющихся кровотечениях, беременности, частых родах, язвах и опухолях ЖКТ, после операций на ЖКТ. При железодефицитной анемии уменьшается размер эритроцитов и их пигментация (гипохромные эритроциты малых размеров).

В эритроцитах уменьшается содержание гемоглобина, понижается насыщение железом трансферрина, а в тканях и плазме крови снижается концентрация ферритина.

Причина этих изменений — недостаток железа в организме, вследствие чего снижается синтез гема и ферритина в неэритроидных тканях и гемоглобина в эритроидных клетках.

Гемохроматоз. Когда количество железа в клетках превышает объём ферритинового депо, железо откладывается в белковой части молекулы ферритина. В результате образования таких аморфных отложений избыточного железа ферритин превращается в гемосидерин. Гемосидерин плохо растворим в воде и содержит до 37% железа.

Накопление гранул гемосидерина в печени, поджелудочной железе, селезёнке и печени приводит к повреждению этих органов — гемохроматозу. Гемохроматоз может быть обусловлен наследственным увеличением всасывания железа в кишечнике, при этом содержание железа в организме больных может достигать 100 г.

Это заболевание наследуется по аутосомно-рецессивному типу, причём около 0,5% европеоидов гомозиготны по гену гемохроматоза. Накопление гемосидерина в поджелудочной железе приводит к разрушению β-клеток островков Лангерханса и, как следствие этого, к сахарному диабету.

Отложение гемосидерина в гепатоцитах вызывает цирроз печени, а в миокардиоцитах — сердечную недостаточность. Больных наследственным гемохроматозом лечат регулярными кровопусканиями, еженедельно или один раз в месяц в зависимости от тяжести состояния больного.

К гемохроматозу могут привести частые переливания крови, в этих случаях больных лечат препаратами, связывающими железо.

Источник: https://lifelib.info/biochemistry/biochemistry_4/90.html

Этапы обмена железа в организме

Этапы обмена железа в организме, Потери железа, Регуляция метаболизма железа

Процесс усвоения железа состоит из ряда последовательных этапов:

1) начальный захват железа щеточной каймой клеток слизистой оболочки кишечника.

2) внутриклеточный транспорт, образование запасов железа в клетке.

3) освобождение железа из слизистой оболочки кишечника в кровь.

В экспериментальных исследованиях выяснилось, что клетки эпителия слизистой оболочки кишечника чрезвычайно быстро забирают железо из его полости.

А ультразвуковые исследования показали, что первый этап обеспечивает достаточную концентрацию железа на поверхности слизистой оболочки клеток для последующего его усвоения организмом.

При этом железо концентрируется щёточной кайме, превращения происходят на мембране микроворсинок.

Второй этап – это поступление железа в богатую рибосомами цитоплазму и межклеточное пространство. И, наконец, третий этап – перенос железа в кровеносные сосуды.

Комплекс трансферрин-железо, образовавшийся в результате захвата железа из клетки слизистой оболочкой кишечника, поступает главным образом в костный мозг, небольшая его часть – в запасный фонд, преимущественно в печень, и ещё меньшее количество железа забирается тканями для образования миоглобина, некоторых ферментов тканевого дыхания и нестойких комплексов железа с аминокислотами и белками.

Костный мозг, печень и тонкий кишечник являются тремя основными органами обмена железа. Клетки костного мозга, так же как и клетки эпителия слизистой оболочки кишечника, имеют повышенную способность захватывать железо из насыщенного трансферрина. Таким образом ненасыщенный трансферрин лучше связывает, а насыщенный – лучше отдаёт железо.

Основным источником плазменного железа являются его поступления из внутренних органов, таких как печень, селезёнка, костный мозг, где происходит разрушение гемоглобина эритроцитов. Небольшое количество железа поступает в плазму из запасного фонда и при взятии его из пищи в желудочно-кишечном тракте.

Преобладающим циклом в обмене железа в организме человека является образование и разрушение гемоглобина эритроцитов, что составляет 25 мг железа в сутки.

Фермент сыворотки крови, вероятно, осуществляет транспортировку железа к клеткам печени, однако его роль в общем обмене железа в организме человека представляется минимальной.

Обмен железа между транспортным и тканевым его фондами изучен недостаточно, так как пути и движения железа из тканей в плазму крови и наоборот изучены мало. Расчётные данные, однако, свидетельствуют о том, что величина плазменно-тканевого обмена железа составляет приблизительно 6 мг в сутки.

Потери железа

Потери железа из организма в норме происходят, главным образом, через кишечник: часть выделяется вместе с желчью, часть – с отторгающимся эпителием. Кроме того, железо теряется с эпителием кожи, волосами, с мочой, а у женщин репродуктивного возраста – с менструальными кровопотерями.

Регуляция метаболизма железа

Усвоение железа зависит от его запасов в организме: при дефиците – возрастает, а при избыточном накоплении – снижается. Роль основного регулятора метаболизма железа выполняют мукозный и плазменный трансферрин.

Мукозный трансферрин (мобилферрин) синтезируется в печени и выделяется с желчью.

В просвете кишечника ионы железа связываются мобилферрином и транспортируются в энтероциты, где железо отделяется от белка и концентрация мобилферрина возрастает, что способствует увеличению поступления железа в слизистые кишечника.

При дефиците железа увеличивается и содержание трансферрина в плазме крови. В результате, переход железа из слизистой в транспортную форму протекает быстро и эффективно. Низкие же запасы железа позволяют трансферрину быстро высвобождать железо в тканях и возвращаться в новый транспортный цикл.

Следствием таких адаптивных сдвигов при дефиците железа являет существенное повышение его абсорбции из пищи. Избыточное накопление железа в организме сопровождается истощением резервных возможностей ферритина, что затрудняет высвобождение транспортного железа в тканях.

Это в свою очередь увеличивает степень насыщения трансферрина, и он теряет свои резервы в связывании железа.

Переход железа из клеток слизистой в транспортную форму угнетается – большая часть железа, поступающего в клетки кишечника, фиксируется в ферритине слизистых и эвакуируется из организма при отторжении эпителия.

Изучение состояния крови и обмена железа, как правило, начинается рутинным исследованием периферической крови. Основными показателями, отражающими состояние красной крови, являются концентрация гемоглобина (Hb) и количество эритроцитов (Er).

Снижение показателя Hb ниже уровня 120 г/л, часто сопровождающееся понижением Er, расценивается как анемическое состояние.

Превышение же нормальных показателей может развиваться в условиях высокогорья, при хронических заболеваниях легких и эритропролиферативных заболеваниях.

Большое значение в клинической практике имеет гематокрит (Ht) – показатель общего объема эритроцитов в крови. Значение Ht зависит от объема плазмы крови, численности и размеров эритроцитов.

Снижение Ht наблюдается при гемодилюции и анемиях.

Следует иметь в виду, что гематологические анализаторы оценивают Ht не путем центрифугирования, а расчетным методом, что не исключает возможность значительной погрешности.

Для выяснения патогенеза нарушений красной крови важное значение имеют индексы насыщения эритроцитов гемоглобином. В первую очередь, это цветовой показатель (ЦП). Значения ЦП ниже 0,86 рассматривают как гипохромные, в пределах нормы – как нормохромные, превышающие 1,10 – как гиперхромные.

Гипохромные состояния характерны для ЖДА, сидеробластной анемии, талассемии, анемии при хронических заболеваниях. Гиперхромия эритроцитов наблюдается при мегалобластной анемии.

Такие индексы насыщения эритроцитов, как среднее содержание гемоглобина в эритроците (MCH) и средняя концентрация гемоглобина в эритроциты (MCHC), вычисляются по тем же физиологическим параметрам, как и ЦП.

Поэтому эти показатели отличаются лишь порядком числовых значений и, имея однонаправленное клиническое значение, не вносят дополнительной информации. Важной характеристикой красной крови является размер и форма эритроцитов. Размеры эритроцитов варьируют в известных пределах – физиологический анизоцитоз.

Эритроциты с диаметром менее 6,7 мкм относятся к микроцитам, с диаметром больше 7,7 мкм – к макроцитам, а с диаметром больше 9,5 мкм – к мегалоцитам. Соотношение эритроцитов различных размеров выражается графически в виде эритроцитометрической кривой.

Сдвиг вершины кривой вправо означает преобладание макро – и даже мегалоцитов, сдвиг влево – преобладание микроцитов. Уширение основания кривой указывает на значительную степень анизоцитоза. Макро и мегалоцитоз характерны для мегалобластных анемий, микроцитоз, часто в сочетании с анизоцитозом, – для ЖДА, сидеробластной анемии, анемии при хронических заболеваниях, талассемии. Показатель среднего объема эритроцитов (MCV) является расчетным5, значительно коррелирует со средним размером эритроцитов.

Важные, надежные характеристики красной крови могут быть получены при изучении морфологии эритроцитов на сухих мазках. Именно морфологические исследования образцов крови позволяют отчетливо выявлять нарушения размера (микро-, макро-, мегалоцитоз, анизоцитоз) и формы эритроцитов (пойкилоцитоз), обнаруживать специфические для некоторых заболеваний патологические формы эритроцитов.

Показателем, отражающим активность эритропоэза, является количество ретикулоцитов (молодых эритроцитов).

Пониженное число ретикулоцитов характерно для апластических состояний, повышенное – наблюдается при активации регенерации крови при гемолитической анемии, после острых кровопотерь, после назначении препаратов железа при ЖДА, стимуляции эритропоэза ЭПО, фолиевой кислотой, витамином В12.

Изучение показателей обмена железа осуществляется системой биохимических тестов. Концентрации протопорфирина в эритроцитах отражает степень обеспеченности железом эритроидных клеток костного мозга. Количество протопорфирина, – предшественника гема, возрастает в эритроцитах при угнетении синтеза гема из-за дефицита железа в костном мозге.

Показатель концентрации сывороточного железа является отражением содержания в первую очередь транспортного пула железа. Снижение этого показателя характерно для развернутых форм железодефицитных состояний. Превышение нормальных значений может свидетельствовать об избыточном накоплении железа.

При интерпретации уровня железа в сыворотке нужно иметь в виду, что его концентрация подвержена суточным колебаниям – максимальная в утренние часы. Показатель сывороточного железа непосредственно перед и во время менструаций выше, чем после их окончания. Некоторые контрацептивы повышают уровень сывороточного железа.

Особо резко концентрация железа в сыворотке повышается после приема железосодержащих лекарственных препаратов, но этот подъем кратковременный – 2-4 дня после однократного приема, после чего, возвращается к исходному уровню.

Могут наблюдаться и случайные вариации уровня сывороточного железа, например, при резком повышении мяса в рационе.

Общая железосвязывающая способность сыворотки (ОЖСС) отражает степень “голодания” сыворотки и насыщения железом трансферрина.

Суть метода состоит в максимальном насыщении сыворотки железом и оценке количества железа, которое может быть связано с белками в 1 литре сыворотки крови.

Разница между показателями ОЖСС и концентрацией железа в сыворотке характеризует латентную железосвязывающую способность сыворотки (ЛЖСС). Этот показатель отражает неиспользуемый резерв трансферриновой системы в связывании железа.

Отношение показателя сывороточного железа к ОЖСС, выраженное в процентах называется коэффициентом насыщения трансферрина железом. Для железодефицитных состояний характерно повышение ОЖСС, значительное повышение ЛЖСС и снижение насыщения трансферрина.

При избыточном накоплении железа наблюдаются противоположные сдвиги – высокое насыщение трансферрина железом и низкие значения ЛЖСС и ОЖСС.

Показатели общего и свободного трансферрина в сыворотке значительно коррелируют с показателями ОЖСС и ЛЖСС, соответственно, и самостоятельное значение имеют лишь при диагностике редких нарушений обмена железа обусловленных нарушением его транспорта. Наиболее специфичным и чувствительным показателем, отражающим запасы железа, является уровень ферритина в сыворотке.

Снижение его концентрации наблюдается с самых ранних стадий развития дефицита железа. А повышенный уровень характерен для состояний с избыточным накоплением железа. Для избежания ошибок при интерпретации теста сывороточного ферритина следует иметь в виду, что концентрация ферритина может повышаться в острой фазе воспаления из-за его выхода из поврежденных клеток.

Косвенным показателем запасов железа в организме является десфераловый тест. Десферал – комплексон, связывающий железо и выводящий его с мочой. Тест состоит в оценке количества выделяемого с мочой железа после введения 500 мг десферала. При дефиците запасов количество выделяемого железа составляет 0,2 мг и ниже, а при избыточных резервах – превышает нормальный уровень.

ПоказательМетодПринцип метода
ФерритинТурбидиметрическийДанный метод основан на реакции образца, содержащего ферритин человека и специфических ингибиторов с образованием нерастворимого комплекса, который может быть измерен турбидиметрически при длине волны 700 нм. Концентрация ферритина может быть определена путем построения стандартной кривой по поглощению стандартов.
Железо сывороткиКолориметрическийОкисленный ион железа освобождаясь в кислой среде от своего белкового носителя трансферина полуколичественно восстанавливается в молекулярную форму. Затем восстановленное железо образует комплексное соединение с чувствительным индигатором железа – хромогеном, в результате чего получается голубой хромофор, который имеет максимальную абсорбцию при 595 нм.
ОЖССКолориметрическийИзбыток железа добавлят в сыворотку, чтобы создать насыщенные условия для его белкового носителя трансферина. Несвязанный ион железа осаждают карбонатом магния (основным). После центрифугирования определяют содержание железа в супернатанте.
ТрансферринИммунотурбидиметрическийРазведенные пробы добавляют к буферу, содержащему специфические относительно человеческого трансферрина (сайдерофилина) ингибиторы. Образующуюся мутность раствора, которая пропорциональна концентрации трансферрина в образце, измеряют турбидиметрически при 340 нм. После построения стандартной кривой (абсорбция относительно разведений стандарта) определяют концентрацию трансферрина в образце. Анализ можно выполнять вручную (при комнатной температуре) или с помощью автоматического анализатора.

Источник: https://studbooks.net/1964396/meditsina/etapy_obmena_zheleza_organizme

МедЗабота
Добавить комментарий